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PREFACE 

To meet the urgent requirement of standardization and unification of the 

system of textbooks and documents as a scientific basis for task teaching, 

learning, and research on effective automatic control theory, we organize and 

compile the textbook "Linear control theory: Computer-aided analytical 

methods." The textbook is compiled based on the content of a number of 

textbooks and documents on automatic control theory, combined with practical 

experience teaching this subject. 

The curriculum includes four chapters: 

Chapter 1: Dynamic description of an automatic control system 

Chapter 2: Dynamic characteristics of an automatic control system 

Chapter 3: Survey of the stability of the automatic control system 

Chapter 4: Quality assessment of the automatic control system 

Chapter 5: Analyzing control systems using Matlab 

The compilation process cannot avoid certain shortcomings. We hope to 

receive comments from readers and colleagues to make the textbook more and 

more complete. 

Sincerely thank you! 

          Author 
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Chapter 1 

DYNAMIC DESCRIPTION OF AUTOMATIC CONTROL SYSTEM 

 The research scope of control theory is broad and encompasses diverse 

physical systems, including motor control systems, heat furnaces, aircraft, and 

chemical reactions. Therefore, it is essential to establish a foundation for 

analyzing and designing control systems with varying physical characteristics. 

This foundation is grounded in mathematics, where the input-output 

relationships of linear systems can be expressed through high-order differential 

equations. However, studying systems based on high-order differential 

equations presents several challenges, prompting researchers to utilize the 

method of describing systems using transfer functions for simplicity and 

effectiveness. In this chapter, we will explore dynamic modeling methods for 

linear automatic control systems. 

1.1. GENERAL OVERVIEW OF AUTOMATIC CONTROL 

SYSTEMS 

1.1.1 Overview of Automatic Control 

a) Control 

Control is the coordination of a specific process that advances according 

to a defined rule, ensuring the attainment of a specific objective. Examples 

include organizing an industrial sewing line, a seafood processing line, an 

electromechanical tracking system for radar antennas, or an automatic control 

system to stabilize the flight path of flying devices. 

Control involves the following processes: collecting information, 

processing information, and taking action on the system to align the system's 

response with the predetermined objective. 

Control can be categorized into two types: a process without feedback, 

known as open-circuit control, and a process with feedback, known as closed-

circuit control. 

Example 1.1.1: Let's examine the process of controlling the opening and 

closing of a circuit breaker, as illustrated in Figure 1.1. 

 

 

 

 

 

 

Figure 1.1: The Process of Opening and Closing the Circuit Breaker 
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When the circuit breaker CD is closed, motor D rotates at speed n, which 

depends solely on the grid voltage and load. The act of opening and closing the 

circuit breaker merely alters the operational state of the motor. If the grid 

voltage remains constant, the action of opening and closing the motor does not 

change the rotational law governing motor speed n. Despite the fact that the 

outcomes of closing and opening the circuit breaker can be thoroughly verified 

through various means, this process represents a control process without 

feedback, referred to as an open-circuit control process. 

In the realm of automation processes, control without feedback lacks 

scientific or practical significance and is seldom employed. It finds limited use 

only in situations where high precision is not a requirement. 

An essential aspect of automation engineering is the adoption of feedback 

control systems (closed-circuit control processes). This approach enables the 

elimination of direct human intervention. 

b) Automatic control system 

- Automatic control 

Automatic control involves the utilization of systems to regulate and 

manage processes without direct human intervention. 

Example 1.1.2: Let's examine a system that regulates the voltage of a DC 

generator on an aircraft. The schematic diagram of this system is depicted in 

Figure 1.2. 

  

 

 

 

 

 

 

 

 

Figure 1.2. Diagram of automatic voltage control of a DC generator on aircraft 

In there: 

(1) - DC generator rotor,   (6) - Excitation variable resistor, 

(2) - Electromagnet,   Uf -Generator voltage, 

(3) - Spring,    Ikt -Excitation current, 

(4) - Variable resistor,   Φkt -Excitation flux, 

(5) - Actuator motor,   Uc - Supply voltage. 
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In the normal state, the generator voltage consistently reaches the rated 

value (Uf = Udm). The resistor's brush is in the middle position, resulting in zero 

voltage supplied to the actuator motor (Uc = 0), causing the motor to remain 

inactive. 

Suppose, for some reason, the generator voltage decreases (due to an 

increased load), leading to a decrease in the electromagnetic attraction of the 

electromagnet (Fdt decreases). Under the influence of the variable resistor's 

pointer spring, it moves downward, causing the voltage Uc to appear for the 

executive motor to operate. This action shifts the pointer of the variable resistor 

(6) to the left (via the gear reducer). Consequently, there is an increase in the 

field current of the generator, elevating the field flux and, as a result, increasing 

the generator voltage. This process continues until the generator voltage equals 

the rated voltage (Uf = Udm). Simultaneously, as the generator voltage gradually 

increases, the electromagnetic attraction force Fdt also increases, pulling the 

variable resistor (4) back to its original position. The voltage Uc supplied to the 

executive motor gradually decreases to 0. The adjustment process concludes 

when the generator voltage reaches the rated value. 

From the above example, it is evident that automatically controlling the 

generator voltage involves coordinating the necessary actions to initiate and 

cease the process, as well as maintaining or altering the voltage levels according 

to preset requirements, all without direct human involvement. 

In summary, automatic control is a synergistic approach that combines the 

essential coordination needed to maintain or alter process quantities in 

accordance with predefined requirements, eliminating the need for direct human 

participation. 

- General functional diagram of the automatic control system 

An automatic control system is a composite arrangement of technical 

equipment designed to execute automatic control processes. Examples include 

missile control systems, unmanned aircraft, and automatic voltage regulation 

systems. 

The general functional diagram of the automatic control system, as 

illustrated in Figure 1.3. 

 

 

 

 

 

Figure 1.3. General functional diagram of the automatic control system 
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In which:   

Controller - Control device,  Plant - Control object , 

Feedback- Feedback device,  e(t) - Deviation signal, 

  f(t) - Noise signal,    z(t) - Feedback signal, 

y(t) - Output signal (output),  d(t) - Control signal, 

  u(t) - Input signal (input amount). 

Control Device (Controller): A control device, also known as a controller, 

is a combination of technical equipment designed to execute control tasks. 

Control devices exhibit significant diversity in terms of functions, construction 

principles, and specific structures. 

Control Object: The control object refers to a combination of technical 

devices wherein specific parameters must be either maintained or altered 

according to predefined rules. Examples include airplanes, missiles, and the 

output voltage of voltage stabilizers. Control objects vary widely in terms of 

effects, impact principles, and structures. 

Feedback Device (Sensor): A feedback device is a tool that measures and 

converts signals from one form of energy to another, which are then transmitted 

and processed within the system. Examples include devices for measuring 

angular speed, angular acceleration (such as accelerometers), force measurement 

(utilizing electrical or pneumatic sensing devices), torque measurement, and 

temperature sensors. 

The fundamental task of control is to generate a signal that acts upon the 

input of the control object, ensuring that the output quantity attains the desired 

value. This interaction involves the control device orchestrating actions based on 

feedback received from the sensor, ultimately achieving the desired control 

objectives. 

Example 1.1.3 . Consider a computer-controlled lathe system as shown in 

Figure 1.4. 

 

 

 

 

 

 

 

Figure 1.4. Lathe system controlled by computer 
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The lathe system is under the control of a computer equipped with a 

control program. This program contains detailed information about the object to 

be turned, including its shape, size, and other relevant parameters. The computer 

generates a standard signal, which is then transmitted through the 

communication port and a digital-to-analog signal converter to reach the 

amplifier, Here, the analog signal is amplified and directed to the executive 

motor. 

The executive motor, in turn, produces control signals that guide the 

cutter's operation in accordance with the predetermined requirements. At the 

system's output, a sensor recognizes the product parameters. This information is 

then passed through an analog-to-digital signal converter and the 

communication port, ultimately returning to the computer. 

The computer processes the feedback received from the sensor and makes 

informed decisions for the next course of action. It is important to note that in 

this diagram, the speed generator functions as a sensor, generating a signal 

within a secondary feedback loop. This additional feedback loop enhances the 

control system's capability to respond to changes and optimize performance. 

c) Classification of automatic control systems 

Automatic control systems are very diverse, they are built on the basis of 

different principles, different control function tasks,... so there are many 

methods of classifying automatic control systems. Includes the following 

classification methods: 

- According to the control principle 

 + Deviation control system 

 + Noise compensation control system 

 + Mixed control system. 

- According to the law of changing input quantity 

Predetermined system 

+ Tracking system (automatic system, tracking system) 

+ Programmed control system . 

- According to the method of signal transmission and transformation 

+ Continuous system 

 

 

 

 

Figure 1.5. Continuous signal graph 
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+ System interruption 

 

 

 

 

Figure 1.6. Interrupt signal chart 

+ Relay system 

 

 

 

 

 

 

Figure 1.7. Diagram depicting relay system signals 

- According to the output quantity 

+ One-way system (with one output)  

+ Multi-way system (more than one output) 

- According to the kinetic equation 

+ Linear system 

+ Nonlinear system 

- According to the error of the system in steady state 

+ Systemstatic system (non-zero error) 

+ Static system (zero error). 

1.1.2.Basic control principles 

Control principles can be considered a guideline to design the highest 

quality and most economically effective control system. Depending on the 

nature, type of mathematical equation, static characteristics of the control object 

and most importantly the control task, the principles of automatic control can be 

very different. The following are the control principles and corresponding 

system setup methods. 

a) Principle of feedback 

To achieve high quality control, the system must have two information 

streams: one from the controller to the control object and one from the control 

object back to the controller (feedback information stream). Unresponsive 
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control (open-loop control) cannot achieve high quality, especially in the 

presence of noise. 

Control schemes based on the feedback principle include: 

- Noise compensation control 

For systems with external impacts on the control object that can be 

checked and measured, and the properties of the control object and its dynamic 

characteristics are known, control is carried out on the basis of the results. 

measurement of external impacts. This type of control is called disturbance 

compensation control. The control system performs the task of eliminating 

external impacts (cancelling noise). Its diagram is presented in Figure 1.8. 

 

 

 

 

Figure 1.8. Diagram of the noise compensation control system 

 This is a control principle to achieve the desired output without observing 

the output signal y(t). For complex systems, noise compensation control cannot 

provide good quality. 

- Deviation leveling control 

 The controller observes the output signal y(t), compares it with the 

desired input signal u(t) to calculate the control signal d(t). This control 

principle adjusts flexibly, eliminates errors, and has good testing and error 

correction capabilities. This is the basic principle of system control. Its diagram 

is presented in Figure 1.9. 

 

 

 

 

Figure 1.9. Diagram of deviation leveling control system 

The content of this principle is to compare the instantaneous state of the 

control object (result) with the law that needs to be controlled to find the error 

signal, and use that error signal to control the system. 

The quantity to be controlled y(t) along with the control action u(t) is fed 

into the comparator, where the calculation is performed: 

e(t) = u(t) - y(t) 

In which: e(t) - Is the error signal. 
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If u(t) = y(t) then e(t) = 0, the system operates according to a 

predetermined standard program. When u(t)  y(t) then e(t)  0, the system 

operates so that e(t) gradually decreases to zero. 

If the control action u(t) does not change sign, but for some reason the 

quantity to be controlled y(t) changes sign. That is, when negative feedback 

changes to positive feedback, the system becomes unstable. 

The circuit that converts the signal from the output to the input is called 

the main feedback circuit. In addition to the main feedback circuit, additional 

component feedback circuits are sometimes added to increase the quality of the 

system. 

- Mix control 

Mixed control is a control method that combines both disturbance 

compensation control and error leveling control. The hybrid control method 

ensures high precision control. The hybrid control system diagram is depicted in 

Figure 1.10. 

The error leveling and mixed control methods have many advantages, so 

they are used quite commonly in control techniques. 

 

 

 

 

 

 

Figure 1.10. Schematic diagram of the hybrid control system 

b) The principle of proportional diversity 

If you want the control process to have quality, the diversity of the 

controller must be commensurate with the diversity of the object. The diversity 

of controllers is reflected in their ability to collect information, store 

information, transmit information, analyze and process it, make decisions, etc. 

The meaning of this principle is that it is necessary to design a suitable 

controller that is compatible with the control object. 

c) Principle of External Complementarity 

Each control system always exists, operates in a specific environment, 

and has a close interaction with that environment. Therefore, it is necessary to 

evaluate external factors affecting the system. The additional principle is that, in 

addition to admitting that there is an unknown object (the black box) affecting 

the system, we must control both the system and the black box. 
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The meaning of the principle of external complementarity is that when 

designing an automatic system, if you want the system to have high quality, you 

cannot ignore interference affecting the system. 

 d) Reserve principle 

Because the principle of external supplementation always considers 

incomplete information, one must be careful of unforeseen events and not use 

full force under normal conditions. Reserve capital is not used but is needed to 

ensure the safe operation of the system. Therefore, in some cases, people 

introduce the reserve principle. 

e) Principles of hierarchy 

A complex control system needs to build many additional control layers 

for the center, and then people use the principle of hierarchy to build the control 

system. The commonly used hierarchical structure is a tree structure, as depicted 

in Figure 1.11. Most control systems in today's production lines can be divided 

into three levels: 

- Execution level: control the device, read signals from sensors 

- Level of coordination 

- Organizational and management level. 

 

Figure 1.11. Hierarchical control diagram 

f) Principle of internal balance 

Each system needs to build an internal balance mechanism to be able to 

self-resolve fluctuations that occur. For example, additional feedback loops can 

be added to the control system. 

1.1.3. Laplace transformation 

a) Define Laplace transform 

- Forward Laplace transform 

Given the function f(t) defined for all t ≥ 0, the Laplace transform of the 

function f(t) denoted F(p) is calculated according to the forward transformation 

formula: 

pt

0

F(p) f (t).e dt


−=       (1.1) 
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The relationship between function f(t) and F(p) is denoted as: 

f(t) 
L

⎯→F(p) or F(p) = L f(t) 

In which:  

t - is the time variable 

p - is the Laplace operator variable (complex variable) 

f(t) - is the original function 

F(p) - is the image function 

L - is the symbol for the forward Laplace transform 

 The Laplace transform exists when the integral in the definition 

expression (1.1) converges. 

 - Inverse Laplace transform 

If the image function F(p) has an original function f(t), the inverse 

Laplace transform is calculated by the formula: 

j

pt

j

1
f(t) . F(p).e dp

2 j

+ 

− 

=
       (1.2) 

 The relationship between functions F(p) and f(t) is: 

 1f (t) L F(p)−=  

L
1−
- is the symbol for the inverse Laplace transform. 

In practice, using the inverse Laplace transform to find the original 

function faces many difficulties. We often decompose the image function F(p) 

into simple fractions and then use the available image origin table to find the 

original function or use the Heviside formula to find the root function more 

easily. The Laplace transform is applied to find the output response of the 

system. 

b) Properties of Laplace transform 

Assume f(t) and g(t) are two functions with corresponding Laplace 

transform: 

F(p) = L{f(t)} and G(p) = L{g(t)} 

- Linearity 

   L Kf(t) K.L f(t) KF(p)= =                                (1.3) 

- Stacking calculation 

     L f (t) g(t) L f (t) L g(t) F(p) G(p) =  =    (1.4) 
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 - Image of the derivative 

 'L f (t) p.F(p) f (0)= −  

 " 2 'L f (t) p .F(p) p.f (0) f (0)= − −  

… 

 (n) n n 1 n 2 (n 1)L f (t) p .F(p) – p .f(0) – p .f’(0) ... – f (0)− − −= −  

When the first condition vanishes, that is: 

f(0) = f '(0) = f''(0) = …= f (n-1) (0) = 0 then 

L f'(t) = pF (p) 

L f''(t) = p2 F(p) 

    … 

     (n) nL f (t) p .F(p)=  

General formula: 

  (n) nL f (t) p .F(p)=      (1.5) 

- Image of integral 

If f(t) has an image of F(p) and the initial condition is 0 then 

0

1
L f (t)dt F(p)

p

  
= 

  
      (1.6) 

- LapLace image of the delay function by a time interval τ 

   p pL f (t ) e .L f (t) e .F(p)− −−  = =    (1.7) 

- LapLace image of convolution 

  ( )
t

0

L f (t)*g(t) L f t T .g(T).dT F(p).G(p)
  

= − = 
  


 

(1.8) 

- Initial value theorem 

t 0 p
f(0) limf(t) lim p.F(p)

→ →
= =

    

(1.9) 

- Final value theorem 

 t p 0
f( ) limf(t) limp.F(p)

→ →
 = =

     

(1.10) 
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Example 1.1.4 . Find LapLace images of the following functions 

a) f(t) = C 

 
pt

pt

0 0

e C
F(p) L C C.e .dt C.

p p

 −
−= = = =

−  

b) f(t) = eat 

 
(p a)t

at at pt

0 0

e 1
F(p) L e e .e .dt

(p a) p a

 − −
−= = = =

− − −  

c) f(t) = t 

  p.t

0

F(p) L t t.e dt


−= =   

The integral has the form u.dv u.v vdu= −  , where: 

u = t → du = dt ; pt p.t p.t1
dv e dt v e dt .e

p

− − −=  = = −  

So: pt pt pt

2 2

0 0 0

1 1 1 1
F(p) t.( .e ) ( .e )dt .e

p p p p

 
− − −= − − − = − =  

d)
4t 2 2tf (t) e sin(t 2) t .e− −= + − +  

Looking up the image origin table, we have: 

 4t 1
L e

p 4

− =
+

 

 2 2t

2 1 3

2! 2
L t .e

(p 2) (p 2)

−

+
= =

+ +
 

  2

1
L sin t

p 1
=

+
 

According to the image property of the delay function, then: 

   
2p

2p

2

e
L sin(t 2) e .L sin t

p 1

−
−− = =

+
 

So according to the superposition property, we get: 

 
2p

2 3

1 e 2
F(p) L f (t)

p 4 p 1 (p 2)

−

= = + +
+ + +
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Example 1.1.5 . Find the corresponding root function of the following 

image function 

p

2

(p 2).e
F(p)

p 4

−+
=

+
 

We have: 
p p

2 2

p.e 2.e
F(p)

p 4 p 4

− −

= +
+ +

 

From the image source table, then:  

1

2

p
L cos2t

p 4

−  
= 

+ 
  

1

2

2
L sin 2t

p 4

−  
= 

+ 
 

Applying the delay property we have:  

p
1

2

p.e
L cos2(t 1)

p 4

−
−  

= − 
+ 

 
p

1

2

2.e
L sin 2(t 1)

p 4

−
−  

= − 
+   

f (t) cos2(t 1) sin2(t 1)= − + −

 1.2. DESCRIBE THE SYSTEM USING MATHEMATICAL METHODS 

1.2.1. Describe the system using differential equations 

a) System working modes 

In fact, there are many mathematical methods to describe the dynamic 

processes of automatic control systems. Because each method has its own 

advantages and disadvantages, the application scope of each method is also 

different. Depending on the type of system, use appropriate methods to survey 

more easily and with higher efficiency. 

Automatic control theory is responsible for solving two problems, or in 

other words, solving two problems: the problem of analysis and the problem of 

system synthesis. First of all, automatic control theory solves analytical 

problems and on that basis proposes methods for synthesizing the system. 

Investigating the properties of the system is based on the mathematical 

description of the system, that is, establishing the mathematical relationship 

(equation) between input and output, when the system works in different modes, 

that is, are: static mode (steady mode) and dynamic mode (transient mode). 

- Static mode and static equations 

Static mode is the working mode of an automatic system (or element), 

when the corresponding input and output signals are unchanging functions of 

time. This means that for a certain fixed value of the input quantity, the system 

will set a fixed value of the output quantity. 

A static equation is a mathematical equation that establishes the 

relationship between the input and output of the system in static mode. 
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The static equation has the general form y = f(u). In the case of a linear 

system, the static equation takes the form: 

y = Ku       (1.11) 

In which: K is the amplification coefficient (transmission coefficient) of 

the system. 

Figure 1.12 presents the static characteristics of different types of systems 

(elements), in which the characteristic curve (1) corresponds to the static 

equation (1.11). 

Characteristic (2) corresponds to the case of a negligible nonlinear 

system; to some extent, we can proceed with linearization and approximate 

replacement with a linear dependence. We call the system in that case a 

linearized system and can apply analysis and synthesis methods as for linear 

systems. 

 

 

 

 

 

 

Figure 1.12. Static characteristics of the system (element) 

Characteristic (3) is a characteristic of a fully nonlinear automatic system, 

or a relay-type characteristic. They have their own analysis and synthesis 

methods and are studied in the nonlinear control system section. 

- Dynamic mode and kinematic equations 

Dynamic mode is the working mode of an automatic system (element), 

when the corresponding input and output signals are a function of change over 

time. 

The kinetic equation is a mathematical equation that establishes the 

relationship between the input and output of the system in dynamic mode. 

General form of the kinematic equation: 

f{y(t)} = f{u(t)}      (1.12) 

Kinetic equations are usually differential or integral equations. That is, it 

contains differential or integral components of different orders of input u(t) and 

output y(t). 

By mathematical transformation we can transform an equation containing 

an integral component into an equation containing only a differential component. 

 

y 

u 

(1) 

(2) 

(3) 

0 
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b) Construct the differential equation of the system 

- General form of differential equation 

Suppose for a system with input u(t) and output y(t) as depicted in Figure 1.13. 

 

 

 

Figure 1.13. Continuous linear automatic control system 

 Then the differential equation describing the continuous linear control 

system has the following general form: 

n n 1

0 1 nn n 1

m m 1 l l 1

0 1 m 0 1 lm m 1 l l 1

d y(t) d y(t)
a a ... a y(t)

dt dt

d u(t) d u(t) d f (t) d f (t)
b b ... b u(t) c c ... c f (t)

dt dt dt dt

−

−

− −

− −

+ + + =

+ + + + + + +

(1.13) 

In which:  

n, m, l are the highest order of output y(t), input u(t), noise f(t); (n ≥ m). 

n is called the degree of the system or the degree of the differential 

equation. 

ai, bj, ck (i = 0.1,...n; j = 0.1,...m; k = 0.1,..., l) are the coefficients of the 

equation differential. 

Write it down: 

n i m j l kn m l

i j kn i m j l k
i 0 j 0 k 0

d y(t) d u(t) d f (t)
a b c

dt dt dt

− − −

− − −
= = =

= +  
   

(1.14) 

When there is only an impact on u(t), then: 

n i m jn m

i jn i m j
i 0 j 0

d y(t) d u(t)
a b

dt dt

− −

− −
= =

=      (1.15) 

When there is only noise effect f(t), then: 

n i l kn l

i kn i l k
i 0 k 0

d y(t) d f (t)
a c

dt dt

− −

− −
= =

= 
    

(1.16) 

The research purpose of the automatic control theory course is to find the 

law of change of output for a certain impact. Therefore, we only need to 

examine one of two equations (1.15) or (1.16). In fact, we often consider the 

impact as input quantity u(t), then the differential equation of the automatic 

control system has the form: 

Continuous linear 

control system 

u(t) y(t) 
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n n 1 m m 1

0 1 n 0 1 mn n 1 m m 1

d y(t) d y(t) d u(t) d u(t)
a . a . ... a .y(t) b . b . ... b .u(t)

dt dt dt dt

− −

− −
+ + + = + + +  

or 

n i m jn m

i jn i m j
i 0 j 0

d y(t) d u(t)
a b

dt dt

− −

− −
= =

=      (1.17) 

Equation (1.17) is called the differential equation describing the automatic 

control system. Solving the differential equation (1.17), we will know the law of 

change of output y(t) with a certain input u(t). 

- Properties of linear systems 

If ai , bj = const (or changes insignificantly), then it is a linear system with 

constant parameters (stationary linear system) 

If ai, bj = var then it is a linear system with variable parameters (non-

stationary linear system) 

If u(t) = const; y(t) = const then the system is in static mode. That is, the 

differential orders are zero, so an y = bm.u, therefore y = ku; where k = bm /an . 

This is the static equation (static mode) of the system, that is, the static 

equation is a special case of the dynamic equation (dynamic mode). If the 

system is linear, then it has the following properties: 

+ Stacking feature 

 If each output signal yi(t) of the system is a response to the input signal 

ui(t), then the linear combination of input signals that i

i

u(t) u (t)= causes the 

output signal is a linear combination of the output signals : 

i

i

y(t) y (t).=  

The principle of superposition allows for great simplification when 

studying linear systems, because if the automatic system is subjected to several 

actions at the same time, we can examine them for each action separately, 

having That is, research independently of each other. On the other hand, if the 

system is subjected to a complex impact, we can divide them into a combination 

of simple impacts (in the form of typical impacts, for example) and study the 

combination of impacts in and output respectively. 

+ Calculate the ratio: 

If y(t) is the system's response to the input u(t), then when there is an 

input ku(t), there will be an output ky(t). 

+ Derivative correspondence properties: If u(t) causes the reaction y(t), 

then du(t)/dt also causes the reaction dy(t)/dt. 
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- Method for building differential equations for the system: 

To establish the differential equation of the system, we rely on the 

physical processes occurring in the system (elements) and the interrelationships 

between those processes. Each physical process is characterized by certain 

physical laws. In the process of establishing the kinematic equation, we use 

known physical equations. 

Construction steps are carried out as follows: 

Step 1: Based on the physical processes occurring in the element, 

determine the mathematical formula of that element. 

For example, apply Kirchoff's laws and current-voltage relationships on 

resistors, capacitors, inductors, etc. to electrical elements. Apply Newton's 

laws—the relationship between friction force and velocity, the relationship 

between force and spring deformation,to mechanical elements. Apply heat 

transfer laws, energy conservation laws, etc. to thermal elements. 

Step 2: Find the equation of the relationship between the elements through 

the formula relating physical quantities. 

Step3: Substitute the mathematical formula of each element into the 

relationship equation and transform it into a canonical differential equation. 

The method of describing automatic control systems by differential 

equations is a classical method, appearing the earliest, but it has an inherent 

disadvantage: High-order differential equations (n > 2) are very difficult to 

solve, which leads to many difficulties in analyzing and evaluating the stability 

of the system based on the mathematical model of differential equations. System 

design based on differential equations is almost impossible in the general case. 

In addition, the system cannot express its nature in terms of frequency. 

Example 1.2.1 .Establish a differential equation describing the dynamic 

properties of the series RLC circuit in Figure 1.14. 

 

 

 

 

Figure 1.14. Serial RLC circuit 

The answer:The voltage applied to the circuit is u1(t), the output voltage is 

u2(t). 

Step 1 : Determine the mathematical formula of each element 

2
2 c

1 du (t)
u (t) u (t) i(t)dt    i(t) C.

C dt
= =  =

 

R L 

C 

i(t) 

u1(t) u2(t) 
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c
R

du (t)
u (t) R.i(t) RC.

dt
= =  

2
c

L 2

di(t) d u (t)
u (t) L. LC.

dt dt
= =  

Step 2 : Find the equation of the relationship between the elements 

According to Kirchoff's law: u1(t) = uR(t) + uL(t) + uC(t) 

1 2

di(t)
u (t) R.i(t) L. u (t)

dt
= + +      (1.18) 

Step 3 : Substitute the formula into the equation and transform it to a 

canonical differential equation 

Substituting the mathematical formula of the elements into (1.18) and 

transforming, we get: 

2
2 2

2 12

d u (t) du (t)
LC RC u (t) u (t)

dtdt
+ + =

   

(1.19) 

Equation (1.19) is a differential equation that describes the dynamic 

properties of a given circuit. 

1.2.2. Describe the system using a transfer function 

a) Define transfer function 

Investigating systems based on differential equations (1.17) is very 

difficult, especially for equations with degrees greater than two. Therefore, we 

need another mathematical representation to make studying automatic control 

systems easier. Through the Laplace transform, we can do this. 

The basic content of applying the Laplace operator to investigate the 

dynamic properties of the system is to convert from the d/dt differential operator 

plane to the Laplace operator plane. 

If the system has an input u(t) and an output y(t), then the differential equation 

describing the system has the form: 

n n 1 m m 1

0 1 n 0 1 mn n 1 m m 1

d y(t) d y(t) d u(t) d u(t)
a a ... a y(t) b b ... b u(t)

dt dt dt dt

− −

− −
+ + + = + + + (1.20) 

Assuming the initial condition is 0, applying the image property of 

derivatives to transform Laplace on both sides of equation (1.20), we get: 

n n 1 m m 1
0 1 n 0 1 m(a p a p ... a ).Y(p) (b p b p ... b ).U(p)− −+ + + = + + +   (1.21) 

Establishing the ratio between the output image function and the input 

image function we have: 
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m m 1
0 1 m

n n 1
0 1 n

Y(p) b p b p ... b
W(p)

U(p) a p a p ... a

−

−

+ + +
= =

+ + +
   

(1.22) 

W(p) is called the transfer function of the element or system. 

Definition : The transfer function of an element or system is the ratio 

between the Laplace image function of the output quantity and the Laplace 

image function of the input quantity when the initial condition is zero. 

It should be emphasized that although the transfer function is defined as 

the ratio between the Laplace image function of the output and input quantities, 

the transfer function does not depend on the output and input quantities, but only 

on the order and parameters of the system. system (note the right-hand side of 

expression (1.22)), so we can use a transfer function to describe the system. In 

other words, based on the transfer function, we can evaluate the characteristics 

of the automatic control system. Describing an automatic control system using 

differential equations (1.17) or transfer functions(1.22) is completely equivalent, 

but investigating the system based on the transfer function is much easier 

because the transfer function is an algebraic fraction that has neither integral nor 

differential calculus, in which: 

Polynomial in the numerator : B(p) = b0 p
m + b1 p

m-1 +....+ bm-1 p + bm . 

The solution of the equation B(p) = 0 is called Zero (zero point). 

The polynomial in the denominator: A(p) = a0 p
n + a1 p

n-1 + ...+an is called 

a characteristic polynomial. 

A(p) = 0 is called the characteristic equation .The solution of the 

characteristic equation is called the Pole. Through the characteristic equation, 

the stability of the system can be considered. 

Example 1.2.2 .Establish a transfer function that describes the dynamic 

properties of the series RLC circuit in Figure 1.14. 

The answer: 

In example 1.2.1, the differential equation of the RLC circuit has been 

established. To find the transfer function, we transform the Laplace transform on 

both sides of equation (1.19) with the initial condition equal to 0: 

( )2
2 1LCp RCp 1 .U (p) U (p)+ + =

     

(1.23) 

 Setting the ratio between the output signal and the input signal we get: 

2
2

1

U (p) 1
W(p)

U (p) LCp RCp 1
= =

+ +
     (1.24) 

Expression (1.24) is the transfer function of a series RLC circuit. 
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 b) Meaning and method of constructing the transfer function 

 - Meaning of transfer function 

The basic content of the course Automatic Control Theory is an analysis 

of system dynamics based on the mathematical model of the transfer function. 

By observing the transfer function, we will recognize the system structure. 

Through the transfer function, we can also determine the initial value and final 

value (according to the properties of the Laplace transform), determine the 

stability of the system, and determine the static gain coefficient of the system. 

t
p 0

k limW(p)
→

=       (1.25) 

From the expression of the transfer function (1.17), we can determine the 

output response of the system over time: 

 Y(p) = W(p).U(p); 

To find the output response y(t), use the inverse Laplace transform: 

 1y(t) L Y(p)−=
      

(1.26) 

Example 1.2.3 . A system is described by the following differential 

equation 

2

2

d y(t) dy(t) du(t)
2y(t) 3. u(t)

dt dtdt
− − = +  

Find the law of change of output y(t)? Knowing u(t) = 1. 

The answer:Perform the Laplace transform with zero initial condition. 

2

3p 1 1
Y(p) .

pp p 2

+
=

− −
 

Applying the Heviside formula, we get the output as: 

t 2t1 2 7
y(t) .e .e

2 3 6

−= − − +
 

 - Method of building a transfer function 

Step 1: Set up a differential equation that describes the relationship 

between the input quantity and the output quantity of the system by applying 

laws, theorems, relationships,... between the elements in the system. 

Step 2: Laplace transform both sides of the differential equation just 

established in step 1 with the initial condition equal to zero, then set the ratio of 

the output image function to the input image function, we get the transfer 

function we need to find. 

Example 1.2.4. Give the differential equation of the missile angular 

coordinate tracking system as follows 
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2

2 12

d y(t) dy(t) du(t)
T KT Ku(t)

dt dtdt
+ = +  

Find the transfer function of the above missile angular coordinate system? 

The answer:Using the properties of the Laplace transform, transforming 

the image of the above differential equation we get: 

2
2 1T p Y(p) Y(p) KT pU(p) KU(p)+ = +  

Establishing the ratio between the output quantity and the input quantity, 

we can find the transfer function of the missile angular coordinate tracking 

system by: 

1

2

(1 pT )
W(p) K .

p(1 pT )

+
=

+
 

From the above examples, we can see that describing the system using a 

transfer function has brought great benefits in analyzing and investigating the 

dynamic properties of the system. To avoid directly solving the differential 

equation, people convert the differential operator to the Laplace operator to 

solve the algebraic equation more easily, then use the intermediate step to find 

the rule of the output, which is convenient and simple. than. 

However, to calculate the transfer function, the initial condition must be 

zero, assuming the conditions are zero to simplify the use of the transfer 

function to study the dynamic nature of the system . The concept of transfer 

function is only used for continuous linear systems and cannot be used for 

nonlinear systems.In addition, studying the system in the frequency domain is 

quite complicated. 

1.3. DESCRIBE THE SYSTEM USING A STRUCTURE DIAGRAM 

1.3.1. General overview of the structural diagram 

a) Structure diagram 

- Concept 

Structural diagram is a diagram showing the connection between dynamic 

stages of an automatic control system. 

The structural diagram of the system can be obtained from the functional 

diagram by describing the dynamic properties of the functional elements by their 

transfer functions. 

- How to represent structural diagrams 

+ Diagrammatic representation 

The dynamic links are linked together to form the main effect circuit and 

feedback circuit (main feedback, partial feedback). 
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Each kinematic step is denoted by a rectangle, in which is written the 

transfer function of that step. Signals are written as operators and have arrows 

indicating the direction of the signal. 

Example 1.3.1 . An automatic control system has a structure diagram as 

shown in Figure 1.15. 

 

 

 

 

 

 

Figure 1.15. Structure diagram of an automatic control system 

+ Some conventions in structural diagrams 

Function block: Each function block has one input signal and one output 

signal with a transfer function equal to: 

 

 

2
2

2

Y (p)
W (p)

U (p)
=  

Additive compare button: Both input signals to the button have an 

additive effect. 

 

  

 Minus compare button (subtractor): One input signal to the button has a 

plus effect, one input signal has a minus effect. 

 

  

Branch button: 

 

 

 b) Basic connections in the structural diagram 

 The structure diagram of an automatic control system can include the 

following three basic connections: serial, parallel and feedback. 

  

+ 
Hoặc   

 
- 

 Hoặc 

W2(p

) 

U2(p) Y2(p) 

U(p) 

W1(p) W2(p) 
 

F(p) 

W6(p) 

W4(p) 

W3(p) W5(p) 
 

Y(p) 
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 - Serial connection 

Serial connection is a way to connect the diagram when the output of the 

previous stage is the input of the next stage. 

Suppose a system has n links connected in series, as depicted in Figure 1.16. 

 

 

Figure 1.16. The system has n links connected in series 

n 1 n n 2 n 1 nY(p) U (p).W (p) U (p).W (p).W (p) − − −= =    

1 2 nY(p) U(p).W .W ....W (p) =
      

n

nt i

i 1

Y(p)
W (p) W (p)

U(p) =

= =      (1.27) 

 Thus, the transfer function of a system with n series connections is equal 

to the product of the component transfer functions. 

- Parallel connection 

Parallel connection is a way to connect the diagram when the outputs of 

the stages have the same signal direction and are sent to the same comparator. 

Suppose a system has n parallel connections, as depicted in Figure 1.17. 

 

 

 

 

 

 

Figure 1.17. The system has n parallel connections 

1 2 nY(p) U (p) U (p) ... U (p)= + + +

    

 

1 2 nY(p) W (p).U(p) W (p).U(p) + ... + W (p).U(p)= +    

 1 2 nY(p) W (p) W (p) + ... + W (p) .U(p)= +     

n

ss i

i 1

W (p) W (p)
=

=
      

(1.28) 

Thus, the transfer function of a system with n parallel connections is equal 

to the sum of the component transfer functions. 

 

W1(p) W2(p) Wn(p) 

U(p) U1(p) U2(p) Un-1(p) Y(p) 

........ 

W1(p) 

W1(p) 

Wn(p) Un(p) 

 

U2(p) 

U1(p) 

Y(p) U(p) 
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- Feedback connection 

 

  

 

 

Figure 1.18. The system has a feedback link 

ph

ph

Y(p) E(p).W(p) U(p) Z (p) .W(p)

        U(P) Y(p).W (p) .W(p)

 = =  = 

 =      

 

ph1 W(p).W (p) .Y(p) W(p).U(p)  =      
 

k

ph

W(p)
W (p)

1 W(p).W (p)
=

    

(1.29) 

In expression (1.29) the minus sign corresponds to positive feedback, the 

plus sign corresponds to negative feedback of the diagram depicted in figure 1.18. 

If the unit response Wph(p) = 1, then: 

k

W(p)
W (p)

1 W(p)
=

     
(1.30) 

1.3.2. Rules for transforming structural diagrams 

a) Overview of the structural diagram with cross-links 

 - Concept: A cross-linked structural diagram is a diagram on which signals 

from one closed-loop circuit are transferred to another closed-loop circuit. 

Example 1.3.2. Consider a structural diagram with three closed-loop 

circuits, as shown in Figure 1.19. 

The signal taken from node A of closed loop I is transferred to closed 

loop III creating a cross-link. To find the equivalent transfer function of the 

system, it is necessary to remove this cross-link. 

 

 

 

 

 

 

Figure 1.19. The system has cross-linkages 

U(p) 

 

Zph(p) 

Y(p) E(p) 

Wph(p) 

W(p) 

U(p) 
W1(p) 

W6(p) 

W4(p) 

W2(p) 

W5(p) 

W3(p) 
  

X3(p) 

A 

X1(p) 

B 

Y(p) X2(p) 

loop III 

loop II 

loop I 
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- General rules for transforming structural diagrams 

Purpose: To find the equivalent transfer function of the whole system. 

Requirements: The input and output signals of the transformed diagram 

must not change their values, so that the original diagram and the transformed 

diagram are equivalent. In other words, the transfer function of the original 

diagram and the transformed diagram must be equal. 

Task: Must switch buttons, comparators or stages so that the signals 

between the loops are independent. 

 b) Basic transformation rules   

 Rule 1: Relocate two branch nodes 

 

 

 

 Rule 2: Move the branch node from front to back one block 

 

 

 

 

Rule 3: Move the branch node from back to front one block 

 

 

  

 

Rule 4: Move the comparator from front to back one block 

 

 

  

 

Rule 5: Move the comparator from back to front one block 

 

 

 

 

 

x1 x4 

x3 x2 

x1 x4 

x2 x3  

 

x1 x3 

x2 
1/W(p) 

W(p) x1 x3 

x2 

W(p) 

 

 

x1 x3 

x2 
W(p) 

W(p) x1 x3 

x2 

 

 

 

x1 x3 

x2 
W(p) 

W(p) x1 x3 

x2 

W(p) 

 

 
 

± 

 
± 

x1 x3 

x2 
1/W(p) 

W(p) x1 x3 

x2 

W(p) 

 

 
 

± 

 
± 
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Rule 6: Switch two comparators 

 

 

 

 

Rule 7: Split a comparator into two comparators 

 

 

 

 

 Note, do not switch a branch node through a comparator , and do not 

switch two comparators when there is a branch node in the middle. 

1.3.3. Types of transfer functions of structural diagrams 

Suppose an automatic control system is described by the structure 

diagram shown in Figure 1.20. 

 

 

 

 

 

Figure 1.20. The system has two effects 

In which: U(p) is the input signal, Y(p) is the output signal, F(p) is the 

noise signal, E(p) is the error signal. 

From the structure diagram in Figure 1.20, we can identify the following 

four basic types of transfer functions. 

a) Open system transfer function 

When disconnecting the feedback connection at point A and considering 

zero noise F(p) = 0, then the remaining diagram is as shown in Figure 1.21. 

 

 

Figure 1.21. Open system diagram 

h 1 2

Y(p) Y(p)
W (p) W (p).W (p)

U(p) E(p)
= = =

    
(1.31) 

W1(p) W2(p) 
Y(p) U(p) 

 

x4 

x2 

  _  
+ 

x1 

x3 

 x4 

x3 

 
+ 

 _ 

x1 

x2 

 

x4 

x2 

 _ 

x1 

x3 

x4 

x2 

 _  

+ x1 

x3 

+ 

Y(p) 
W1(p) 

phW (p)

 

W2(p)  

U(p) 

F(p) 

Zph(p) 

E(p) 
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b) Closed system transfer function 

Assuming zero interference F(p) = 0, then the diagram will be as shown in 

Figure 1.22. 

 

 

 

Figure 1.22. Closed system diagram 

h
k

ph h

Y(p) W (p)
W (p)

U(p) 1 W (p).W (p)
= =

+     

(1.32) 

When the unit response Wph(p) = 1, then: 

h
k

h

Y(p) W (p)
W (p)

U(p) 1 W (p)
= =

+     
(1.33) 

c) Transfer function by error 

The error transfer function is the ratio of the error image function E(p) to 

the input image function U(p) with the initial condition being zero and the noise 

effect being zero. 

The error transfer function is denoted by WE (p): 

E

E(p)
W (p)

U(p)
=  

Using the structure diagram in Figure 1.22, we have 

ph phE(p) U(p) Z (p) U(p) W (p).Y(p)= − = −      

Should: 

ph

E ph k

U(p) W (p).Y(p)
W (p) 1 W (p).W (p)

U(p)

−
= = −

   
 

E

ph h

1
W (p)

1 W (p).W (p)
=

+       

(1.34) 

If the unit response Wph (p) = 1, then: 

h
E

h h

W (p) 1
W (p) 1

1 W (p) 1 W (p)
= − =

+ +     
(1.35) 

 d) Transfer function under noise 

 The noise transfer function is the ratio of the output image function Y(p) 

to the noise image function F(p) with the initial condition being zero and the 

input being zero. 

 

 

W1(p)  

Wph(p) 

W2(p) 
U(p) Y(p) E(p) 
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 The transfer function under noise is denoted by WF(p): 

F

Y(p)
W (p)

U(p)
=

 

At this time, U(p) = 0, the structural diagram is described as shown in 

Figure 1.23. 

Using expression (1.29) for the feedback link we get: 

2
F

1 2 ph

Y(p) W (p)
W (p)

F(p) 1 W (p).W (p).W (p)
= =

+
    

(1.36) 

 2
F

h ph

W (p)
W (p)

1 W (p).W (p)
=

+
    

(1.37) 

 

 

 

 

Figure 1.23. System diagram according to interference effects 

Example 1.3.3. Simplify the structural diagram, find the transfer functions 

Wh (p), Wk (p), WE (p) of the system described in Figure 1.24. 

 

 

 

 

Figure 1.24. The system has cross-linkages 

The answer:Move the branch node from before W3(p) to after W3(p), then 

move the position between two nodes A and B as shown in Figure 1.25. 

 

 

 

 

Figure 1.25. The system after transformation 

Considering closed loop (I), its transfer function is 

2 3
I

2 3

W (p).W (p)
W (p)

1 W (p).W (p)
=

+      

 

 

 

Wph(p) 

 

W1(P) 

W2(p) 

 

F(p) Y(p) 

U(p) 
  W3(p) W2(p) W1(p) 

   

Y(p) A B 

U(p) 
  W3(p) W2(p) W1(p) 

   

Y(p) A B 

1/W3(p) 

(I) 
(II) 

(III) 
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Considering closed loop (II), its transfer function is 

1 I
II

1 I

3

W (p)W (p)
W (p)

1
1 W (p)W (p)

W (p)

=

+
     

 

Substituting the value of WI(p) into the above expression, we find the 

open system transfer function by: 

1 2 3
h II

1 2 2 3

W (p)W (p)W (p)
W (p) = W (p)

1 W (p)W (p) W (p)W (p)
=

+ +  

 

 The transfer function conveys a closed system by: 

h
k III

h

W (p)
W (p)=W (p)

1 W (p)
=

+
 

1 2 3
k

1 2 2 3 1 2 3

W (p)W (p)W (p)
W (p)

1 W (p)W (p) W (p)W (p) W (p)W (p)W (p)
=

+ + +
 

 The transfer function in terms of error is equal to: 

1 2 2 3
E

h 1 2 2 3 1 2 3

1 1 W (p)W (p) W (p)W (p)
W (p) = 

1 W (p) 1 W (p)W (p) W (p)W (p) W (p)W (p)W (p)

+ +
=

+ + + +
 

1.4. CHAPTER 1 EXERCISES 

1.4.1. Sample solution exercises 

Exercise 1: Use the Laplace transform to solve the following differential 

equation 

2

2

d y(t) dy(t)
3 2y(t) 5u(t)

dtdt
+ + =  

With u(t) being the unit step function, and the initial condition: y(0) = -1; 

y'(0) = 2. 

The answer:Transforming the Laplace transform on both sides of the 

original differential equation, we have: 

2 (1) 5
p Y(p) py(0) y (0) 3pY(p) 3y(0) 2Y(p)

p
− − + − + =  

2 2

2

p p 5 p p 5
Y(p)

p(p 1)(p 2)p(p 3p 2)

− − + − − +
 = =

+ ++ +
 

Decompose the function Y(p) into a sum of simple fractions: 

2p p 5 A B C
Y(p)

p(p 1)(p 2) p p 1 p 2

− − +
= = + +

+ + + +
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Using the coefficient balance method, we can determine the coefficients 

A, B, C: 
2p p 5 5 5 3

Y(p)
p(p 1)(p 2) 2p p 1 p 2

− − +
= = − +

+ + + +
 

Looking up the Laplace transform table, we get: 

t 2t5 3
y(t) 5e e       ; t 0

2 2

− −= − +   

Exercise 2: Find the transfer function of the operational amplifier circuit 

described in Figure 1.26. 

The answer:According to the circuit diagram, the current relationship is: 

i1(t) = i2(t) + i3(t) 

In there: 

,
v

1

1

,
r

2

,
r

3

2

u (t) u (t)
i (t) ;

R

d(u (t) u (t))
i (t) C ;

dt

u (t) u (t)
i (t) ;

R

−
=

−
=

−
=

 

Inferred 

( ),, ,
rv r

1 2

d u (t) u (t)u (t) u (t) u (t) u (t)
C

R dt R

−− −
= +  

The characteristic of an operational amplifier is that the input impedance 

is very large (can be considered as infinity), so the current entering the 

operational amplifier i' = 0 or u'= 0, therefore: 

v r r

1 2

u (t) du (t) u (t)
C

R dt R
= − −  

Two-sided Laplace transform: 

v 2
r

1 2

U (p) R Cp 1
U (p)

R R

+
= −  

Setting the ratio between the output signal and the input signal, we get the 

transfer function: 

r 2

v 1 2

U (p) R 1
W(p) .

U (p) R R Cp 1
= = −

+  
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Figure 1.26. Operational amplifier circuit 

1.4.2. Self-explanatory exercises 

1. Find the Laplace image function of the following original function 

0,4t

0

0                      khi t < 0
b) f (t)

e cos12t      khi t  0

0                      khi t < 0
c) f (t)

3sin(5t 45 ) khi t  0

0                      khi t < 0
d) f (t)

0,33(1 cos2t)    khi t  0

−


= 




= 

+ 


= 

− 

 

2. Find the origin function of the following Laplace image functions 

a)
p 3

F(p)
(p 1)(p 2)

+
=

+ +
 

b)
2

2p 12
F(p)

p 2p 5

+
=

+ +
 

c)
2

3

p 2p 3
F(p)

(p 1)

+ +
=

+  

Answer:   

a)
t 2tf(t) 2e e khi t 0− −= −   

b)
t tf (t) 5e sin 2t 2e cos2t khi t 0− −= +   

c)
2 tf (t) (1 t )e khi t 0−= +   

3. Find the origin function of the following Laplace image functions: 

a)
2

p 2
F(p)

p(p 1) (p 3)

+
=

+ +
 

C 

 
- 

+ 

 R2 

ur uv 

 u’ 

i2 

i3 

i1 
R1 



38 
 

b)
2

5(p 2)
F(p)

p (p 1)(p 3)

+
=

+ +  

c)
p

2

(p 2).e
F(p)

p 4

−+
=

+
 

Answer:  

a) t t 3t2 3 1 1
f (t) e te e

3 4 2 12

− − −= − − +  

b) t 3t25 10 5 5
f (t) t e e

9 3 2 18

− −= − + + +  

c) f (t) cos2(t 1) sin2(t 1)= − + −  

4. Use the Laplace transform to solve the following differential equation 
2

2

d y(t) dy(t)
2 5y(t) 0

dtdt
+ + =  

With the initial condition y(0) = 1, y ' (0) = dy(t)/dt| t = 0 = 0. 

Answer: t t1
y(t) e cos2t e sin 2t

2

− −= +  

5. Find the transfer function of the operational amplifier scheme shown in 

Figure 1.27. 

 

 

 

 

 

 

 

Figure 1.27. Circuit diagram for operational amplifier 

Answer: r 2 2 1 1 1 1 1

v 1 1 2 2 2

2 2

1
p

U (p) Z R R C p 1 C R C
W(p)

1U (p) Z R R C p 1 C
p

R C

+
+

= = − = − = −
+

+

 

6. Find the transfer function of the circuit diagram in Figure 1.28. 

Answer: 1 1 2 2

1 1 2 2 2 1

Y(p) (R C p 1)(R C p 1)
W(p)

U(p) (R C p 1)(R C p 1) R C p

+ +
= =

+ + +
 

 

C2 

 
- 

+ 

 R2 

ur(t) uv(t) 

 u’ 

i2 
i1 

C1 

R1 
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7. For a navigation system between a satellite (flying object) and the sun, 

with a closed system negative feedback the unit has an open system transfer 

function as follows: 

2

K(p 20)
W(p)

p(p 24p 144)

+
=

+ +
 

 Find the differential equation of the closed system. 

 

 

 

 

 

Figure 1.28. Electrical circuit diagram 

8. Determine the transfer function of the system with the structural 

diagram shown in Figure 1.29. 

 

 

 

 

 

Figure 1.29. Structural diagram of a system 

 Answer : 1 2 3

1 2 4 1 2 3 5

U(p) W W W
W(p)

Y(p) 1 W W W W W W W
= =

− +
 

9. Determine the transfer function of the system with the structural 

diagram shown in Figure 1.30. 

 

 

 

 

 

Figure 1.30. Structural diagram of a system 

Answer: 

1 2 3

1 2 1 2 3 2 1 2 3

Y(p) W W W
W(p)

U(p) 1 W W H W W H W W W
= =

− + +
 

  

W1(p) 

H1(p) 

U(p) - 
W2(p) 

Y(p) 

- + 

   
W3(p) 

H2(p) 

 

R1 

R2 

C2 

C1 

u(t) y(t) 

W1(p) W2(p) W3(p) 

W4(p) 

W5(p) 

 

Y(p) U(p) 

+ 
- 
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 10. A supersonic aircraft with a wing control system has a structural 

diagram, as depicted in Figure 1.31. Two gyroscopes are used for angle and 

speed feedback. The moment M acts on the vertical axis of the aircraft by tilting 

the two auxiliary wings in opposite directions. Find the closed system transfer 

function in terms of error and in terms of restraining moment Mc . 

 

 

 

 

 

 

Figure 1.31. Wing control system of supersonic aircraft 

 Answer: 

p w m

k 2
0 p w m g

2

E 2
0 p w m g

2
g

F 2
c p w m g

K K K(p)
W (p)

(p) p(Jp D)(Ip R p 1/ C) K K K (1 D p)

E(p) p(Jp D)(Ip R p 1/ C)
W (p)

(p) p(Jp D)(Ip R p 1/ C) K K K (1 D p)

(1 D p)(Ip R p 1/ C)(p)
W (p)

M (p) p(Jp D)(Ip R p 1/ C) K K K (1 D p)


= =

 + + + + +

+ + +
= =

 + + + + +

− + + +
= =

+ + + + +

 

11. Determine the transfer function of the system with the structural 

diagram shown in Figure 1.32. 

 

 

 

 

 

 

 

 

Answer : 

1 2 3 2 3 4

1 2 3 2 1 2 3

Y(p) G G G G G G
W(p)

U(p) 1 H G G H G G G

+
= =

+ +
 

 

G1 

G4 

G2 G3 

H1 

H2 

  

Y(p) U(p) 

- 
- 

+ 

Figure 1.32. Structural diagram of a system 

Controller Auxiliary wings 

Gyroscopes 

0 

w m
2

K K

p R p 1/ c+ +
 

1

p(Jp D)+
  

_ 
 

1+ Dgp 

_ 
 

Mc 

Kp 
M 

e 
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12. For the autopilot system of a supersonic aircraft as shown in Figure 1.33. 

 

 

 

 

 

 

Figure 1.33. Autopilot system of supersonic aircraft 

 Find the transfer function for open system, closed system, error and noise. 

13. Give a shortened structure diagram of the rocket self-guidance control 

system along the flight plane as depicted in Figure 1.34. Find the transfer 

function for the open system, the closed system, and the deviation of the system 

according to the given parameters. 

 

 

 

 

 

 

Figure 1.34. The control system automatically guides the missile along the 

throw plane 

 14. Survey the telephone network transmitting signals, including noise 

(interference) as described in Figure 1.35. In the feedback path there is a filter 

H(p) to keep the closed system stable. Determine the closed system transfer 

function and the signal Y(p) at the receiver according to each noise F1(p), F2(p). 

Know f1(t) = f2(t) = δ(t). 

 

 

 

 

 

 

Figure 1.35. The telephone network has transmission interference 

 

γ β0 e 

 
Ky

 

1

p
 

K

1 pT



+
 

TL

1

1 pT+
 cqK

 

1

p
 

 

 
- - 

U(p) 

1

p 2+
 

2

1

p p 1+ +
  

_ 
 

H(p) = (p + 1)3 

+ 

Y(p) 

F1(p) 

E(p) Thu Phát 

 

+ 

F2(p) 

1

p(p 6)+
 

1

p 8+
 

2

K(p 4)

p 2p 2

+

+ +
   

Wph =1 

W1(p) W2(p) W3(p) 

Y(p) U(p) 

F(p) 

+ 

_ 

Plane Motor Actuator  

Gyroscope 

E(p) 
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Conclusion of chapter 1 

Chapter one presented methods to describe linear automatic control 

systems. Depending on the system and control problem to be solved, we choose 

the appropriate description method. If the problem is to analyze a system with 

one input, one output and the relationship between input and output can be 

expressed by a constant coefficient differential equation, then the transfer 

function method can be chosen to describe the system. system. 

 

Chapter 1 review questions 

Question 1: Analyze the basic components and signals of the automatic 

control system? Control principles? 

Question 2: Definition and properties of Laplace transform? 

Question 3: What is the method to describe the control system using 

differential equations and transfer functions? 

Question 4: What are the basic rules for transforming structural diagrams? 

Question 5: What are the types of communication functions of structural diagrams? 
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Chapter 2 

DYNAMIC CHARACTERISTICS OF AUTOMATIC CONTROL SYSTEM 

The system's dynamic characteristics describe the change in the output 

signal over time when there is an input. In reality, automatic control systems are 

very diverse, but systems described by mathematical models of the same form 

will have similar dynamic characteristics. To investigate the dynamic 

characteristics of the system, the input signal is often chosen as a basic signal 

such as a unit step function, a unit impulse function, or a harmonic function. 

Depending on the type of input signal, the resulting dynamic characteristics are 

either time characteristics or frequency characteristics. 

2.1. BASIC CHARACTERISTICS OF AUTOMATIC CONTROL 

SYSTEM 

2.1.1. Typical signals 

Typical signals are predetermined signals, typical in practice, 

characteristic of different impacts, reflecting the most severe nature and most 

likely working mode of the system. 

Typical signals are easily generated experimentally using technical 

equipment. Simple in mathematics, it is easy to investigate the system using 

mathematics. If the system satisfies the working requirements for typical 

signals, it will also satisfy the working requirements for other common signals. 

a) Unit ladder signal 

Mathematical expression of the unit ladder signal: 

0 khi  t 0
1(t)

1 khi  t 0


= 

       

(2.1) 

 

 

 

 

Figure 2.1. Signal graph 1(t)   Figure 2.2. Graph of unit pulse signal 

The graph of the unit step signal is depicted in Figure 2.1, this signal 

characterizes the sudden change of external influences (for example: Load, 

control rotation angle...). 

b) Unit pulse signal 

Mathematical expression of the unit pulse signal (Dirac pulse): 

0 khi t 0
(t)

khi t 0


 = 

 =       
(2.2) 

t 

1(t) 

1 

0 

(t) 

0 

a 

1/a 

t 

(t) 

t 

0 

(a)  (b)  
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The graph of the unit pulse signal is depicted in Figure 2.2 ((a) is the 

theoretical signal graph, (b) is the actual signal graph), this signal characterizes 

the effects that occur. occurring in a short period of time (for example, the 

impact of airflow on the autopilot system, impulse loads in electrical and 

electromechanical systems...). 

There is a relationship between the unit step function and the unit impulse 

function as follows: 

d1(t)
(t)

dt
 =        (2.3) 

Area of pulse: 

t t

0 0

d1(t)
S (t)dt dt 1

dt
=  = = 

     

(2.4) 

The function (t) has the following properties: 

(t)dt 1



−

 =
       

(2.5) 

In reality, the unit pulse has a certain height and width. To have a width of 

one, the height must be the inverse of the width. The smaller the width, the 

closer the actual function is to the theoretical function. 

c) Harmonic signal 

Mathematical expression of harmonic signal: 

u(t) = Um.sin t  or  u(t) = Um.cos t    (2.6) 

 

 

 

 

 

Figure 2.3. Describe harmonic signals 

 When the input to the system is a harmonic signal, the output is a 

harmonic signal, then we can determine the frequency characteristics of the 

system. 

d) Represent any signal through a typical signal 

Signals of any type can be represented as either a 1(t) signal or a (t) 

signal. To express u(t) in terms of 1(t) and (t) we decompose u(t) by the 

Duamen integral. 

u(t) 

t 

0 

Cosωt  

Sinωt  
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Represent any signal u(t) through 1(t): 

t

 (   0) 0

du( )
u(t) u( ) .1(t) .1(t )d

d →


=  + −  


   

(2.7) 

To represent any signal u(t) through (t), we implement u(t) according to 

the formula: 

t

(  0)

u(t) u( ). (t )d

+

→ 

=   −  
     

(2.8) 

If x(t) is definite and continuous for all values of t then: 

u(t) u( ). (t )d



−

=   −  
      

(2.9) 

2.1.2.Basic characteristics 

a) Time characteristics 

The timing characteristic is the response of the system when the input is 

signal 1(t) or (t). 

- Excessive jaw 

The transient function h(t) is the response of the system when the impact 

is a unit step signal 1(t). 

If we know the transfer function of the system, we can determine h(t) 

using Laplace's inverse transform formula (Laplace image of signal 1(t) is 1/p): 

 1 1 1
h(t) L U(p).W(p) L .W(p)

p

− −  
= =  

      

(2.10) 

 Where W(p) is the transfer function of the system. 

The description of the transition function on the graph is called the 

transition characteristic. Transient characteristics include two types: Non-

oscillating transient characteristics are described in Figure 2.4a and oscillatory 

transient characteristics are described in Figure 2.4b. 

 

 

 

 

 

 

Figure 2.4. Describe transient characteristics in the system 

h(t) 

hxl 

2 

0 
Tqđ 

h(t) 

hxl 

2 

t 

0 

 

hmax T 

t 

(a) (b) 

Tqđ 
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For systems with non-oscillating transient characteristics (first-order 

systems), quality assessment criteria often include: 

The time constant T is the time interval between the vertical axis and the 

intersection of line h xl with the tangent of line h(t) at the origin. 

The transition time Tqd is the time period from the origin to the moment 

the transition process reaches a set value with static error . 

Static error (or ε) is the deviation of the output quantity h(t) from its 

steady value at a time equal to the transition time. 

For systems with fluctuating transient characteristics, quality assessment 

criteria often include: 

Transient time Tqd (defined as non-oscillating transient characteristic). 

Overcorrection is the ratio of the maximum deviation of h(t) from its set 

value divided by the set value in percent. 

max xl

xl

h h
100%

h

−
 =

      

(2.11) 

The fluctuation n is the number of fluctuations in the transition period Tqd.

qđ

0

T
n

T
=        (2.12) 

Where T0 is the oscillation period. 

Static error (defined as a non-oscillating transient characteristic). 

- Weight function 

The weight function g(t) is the system's response when the impact is a 

unit pulse signal (t). 

If we know the transfer function of the system, we can determine g(t) 

using Laplace's inverse transform formula (Laplace image of signal δ(t) is 1): 

   1 1g(t) L W(p).1 L W(p)− −= =     (2.13) 

 Relationship between h(t) and g(t): 

t

0

h(t) g(t)dt=  good 
dh(t)

g(t)
dt

= .     (2.14) 

 

 

 

 

Figure 2.5. Describe the pulse characteristics of the system 

g(t) 

0 
t 

(2) 

(1) 
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The description of the weight function on the graph is called the impulse 

characteristic. Similar to the transition function, the weight function also has two 

types: non-oscillating characteristics (line 1) and fluctuating characteristics (line 

2) as described in figure 2.5. From the relationship (2.14), we see that it is 

possible to use both the transition function and the weight function to investigate 

the dynamic characteristics of the system, but in reality people often use the 

transition function when studying the system. Save the automatic control system. 

b) Frequency characteristics 

- Frequency transfer function 

Definition: The frequency transfer function is the ratio between the output 

and input of the system (or element) in a steady state. When the input changes 

according to the harmonic law mu(t) U .sin .t=  , the output also changes 

according to the law. air conditioning my(t) Y .sin( .t ).=  +   

Suppose an automatic control system is described by the following 

differential equation: 

n n 1 m m 1

0 1 n 0 1 mn n 1 m m 1

d y(t) d y(t) d u(t) d u(t)
a a ... a y(t) b b ... b u(t)

dt dt dt dt

− −

− −
+ + + = + + + (2.15) 

In which:  u(t), y(t) are the input quantity and output quantity, 

m, n are the highest level of input and output, 

ai, bj are the coefficients of the differential equation (i = 0, 

…, n; j = 0, …, m). 

Expressed as a complex of input quantities, output quantities and 

derivatives of all levels, we get: 

j t
m m

m
m m j t

m mm

j( t )
m n

n
n n j( t )

n nn

u(t) U .sin t U .e

d u(t)
U . .sin( t m. ) U .( j ) .e

2dt

y(t) Y .sin( t ) Y .e

d y(t)
Y . .sin( t n. ) Y .( j ) .e

2dt





 +

 +

 =  



=   +  




=  +  


 =   + +  
   

(2.16) 

At this point, the corresponding other equation representation of (2.15) is: 

n m
n i j.( .t ) m j j .t

i n j m

i 0 j 0

a .( j ) .Y .e b .( j ) .U .e−  + − 

= =

  
 =   

    
 

   

(2.17) 

According to the definition: The frequency transfer function of a system is 

the ratio of the complex amplitude of the output quantity to the complex 

amplitude of the input quantity, we have: 
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m m 1
j.n 0 1 m-1 m

n n 1
m 0 1 n-1 n

Y b (j )   b (j )  ...  b (j ) b
W(j ) .e

U a (j )   a (j )  ...  a (j ) a

−


−

 +  + +  +
 = =

 +  + +  +
  

(2.18) 

The expression (2.18) is called the frequency transfer function of the 

system (or element). 

Comparing the frequency transfer function with the transfer function 

expression (1.22), we can determine W(jω) by replacing p = jω, then: 

p= jω
W(jω) = W(p)       (2.19) 

We can easily see that the frequency transfer function W(j ) is a 

complex number, depending on the frequency. Through W(jω), it is possible to 

determine the gain coefficient, phase difference angle for the alternating signal 

and determine the equation of the output signal during the establishment 

process. 

- Fundamental frequency characteristics 

+ Frequency phase amplitude characteristics (Nyquist chart) 

The frequency phase amplitude characteristic is the trajectory of the 

frequency transfer function W(j) on the complex plane when varying from 

0÷. The characteristic W(jω) is a vector whose length and angle vary with 

frequency. If the variation is from 0 to the top point of the vector W(j) will 

trace a curve as shown in Figure 2.6. 

 This curve is called the velocity phase-frequency characteristic or Nyquist 

plot. Each point on the graph corresponds to both the real value and the 

imaginary value of the vector W(j) at a certain frequency. The characteristic 

W(j) is obtained from the frequency transfer function where the order in the 

numerator is always smaller than the order in the sample, so when ω approaches 

∞ then |W(jω)| → 0. 

 The complex function W(j) can be written algebraically: 

W(j) = P() + jQ()      (2.20) 

Or write in amplitude - phase form:  

jarctg ( )W(j ) A( )e   =       (2.21) 

 

 

 

 

 

Figure 2.6. Nyquist plot 

jQ() 

() 
0 =0 

→ 

A(ω) 
W(j) 

P() 
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Figure 2.7. Frequency amplitude characteristics 

+ Frequency amplitude characteristics 

If we know P(ω) and Q(ω), we can easily determine A(ω): 

2 2A( ) W(j ) P ( ) Q ( ) =  =  +     (2.22) 

For variation from 0 to , then A() will trace a curve of the form 

shown in Figure 2.7. 

Frequency phase characteristics 

Q( )
( ) arctg

P( )


  =

       
(2.23) 

Frequency phase characteristics are often measured in rads on the vertical 

axis, and in rad/s or dec units on the horizontal axis. 

When varyingfrom 0÷we can draw the phase-frequency characteristic 

as shown in Figure 2.8. 

 

 

 

 

Figure 2.8. Frequency phase characteristics 

Frequency amplitude logarithm characteristics 

To simplify graphing and facilitate the process of studying the dynamic 

properties of the system, the logarithmic characteristic of frequency amplitude is 

used. The logarithm property helps convert products and quotients into algebraic 

sums. To the extent of allowable error, the terms in the algebraic sum can be 

considered to depend linearly on frequency, meaning that the curve form A() 

can be transformed into an approximate straight line form. 

So if we know A(ω), we can determine the logarithmic characteristic of 

frequency amplitude in dB units as 

L() = 20lgA()       (2.24) 

The way to represent L(ω) is described in Figure 2.9: 

 

0 

A() 

 

() 

0 
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The horizontal axis is divided by lg , directly record the value of but 

divided by decimal logarithm. 

The horizontal axis can be divided in units of dec (decade), 1 dec is a 

measure of the distance between two frequencies 10 times apart. For example, 

= 1 corresponds to 0 dec, = 10 corresponds to 1 dec: 

10
lg lg10 1 [dec]


= =


       

Thus, the distance between any two frequencies 1 and 2 is: 2

1

lg [dec]



. 

The horizontal axis can also be divided by the unit oct (Octavo) 

corresponding to the logarithm of the frequency increase by 2 times: 

1

1

1 oct lg2 lg2 0,3.


= = 


 

 

 

 

 

 

 

 

 

 

Figure 2.9. Represents the logarithmic characteristic of frequency 

amplitude 

 

 

 

 

 

 

 

 

 

Figure 2.10. Amplitude and phase Bode plot 
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In addition, we can express the slope of the curve L() according to the 

following formula with the unit dB/dec: 

2 1

2 1

L( ) L( )
tg [dB / dec]

lg( ) lg( )

 − 
 =

 − 
    (2.25) 

In fact, people often represent the logarithmic characteristics of frequency 

amplitude and frequency phase characteristics on the same coordinate system 

with the horizontal axis having the same units and the vertical axis coinciding 

but with different units. Then called the Bode plot, it includes the amplitude 

Bode plot L(ω) and the phase Bode plot φ(ω), as depicted in Figure 2.10. 

To simplify when drawing Bode plots, people often replace the L() curve 

with asymptotic lines with L error smaller than the allowed level of ±3dB. 

2.2. TYPICAL KINEMATIC STAGES 

2.2.1. Overview of typical kinematic stages 

a) Concept 

In an automatic control system, although the system's elements have the 

same function, their structure and dynamic properties can be completely 

different. The dynamic properties of particles are characterized by their dynamic 

equations, such as differential equations, transfer functions, or equations of 

state. Therefore, if we examine each group of elements with the same type of 

kinematic behavior, it will allow us to examine the dynamic properties of the 

general and convenient system, this can be illustrated with the following simple 

example. . 

Suppose there are two elements described in Figure 2.9. 

 

 

 

 

 

Figure 2.11. Electrical elements and mechanical elements have the same 

kinematic equation form 

Figure 2.9a is the element that will transform the voltage from u1 to u2 

with the kinetic equation 

2
2 1 1

1 2

R
u .u K.u

R R
= =

+      
(2.26) 

Figure 2.9b is the element that will transform the displacement from x 1 to 

x 2 with the kinematic equation 

 

 

R1 

u2 u1 
R2 

X2 

X1 
l1 

l2 

(a)  (b)  
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2
2 1 1

1

l
x .x K.x

l
= =

      
(2.27) 

The above two elements have completely different structures and physical 

processes, but the description of their dynamic process is completely the same 

(compare the two expressions (2.26) and (2.27)). 

Concept: 

In automatic control theory, elements with similar differential equations 

are classified into a type called kinematics. 

Typical kinematic stages are kinematic stages whose differential 

equations describing the dynamic process are of order less than or equal to two. 

b) Classification 

Based on the characteristics of differential equations, typical kinematics 

stages can be divided into three types: integral stages, differential stages and 

integral stages. 

- Suture the original jaw 

The primitive stage is a typical kinematic stage in which the output 

quantity y(t) is proportional to the input quantity u(t). 

Typical primitive links are: Amplifying link (proportional link), inertia 

link, oscillation link, hysteresis link and unstable link. 

- Differential stitching 

The differential step is a typical dynamic step that in the mode of setting 

the output quantity y(t) is proportional to the input quantity derivative du(t)/dt. 

- Integral stage 

The integration step is a typical dynamic step in which the output quantity 

y(t) is set proportional to the input quantity integration u(t)dt .   

2.2.2. Elemental stages 

a) Amplification stage 

- Differential equations 

The amplification stage is a typical dynamic stage where the differential 

equation has the form: 

y(t) = Ku(t)        (2.28) 

In which: K is the transmission coefficient of the stage if the output and 

input quantities do not have the same dimension, is the amplification coefficient 

if the output and input quantities have the same dimension. 

Examples of elements equivalent to the amplification stage: Measurement 
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elements (interceptor, variable resistor,...); amplifier element (electronic 

amplifier, semiconductor,...). 

- Transfer function 

Transforming the Laplace transform on both sides of equation (2.28), we 

get the following function: 

Y(p)
W(p) K

U(p)
= =

      
(2.29) 

 - Time characteristics 

+ Transient function 

1 11 1
h(t) L W(p). L K. K.1(t)

p p

− −   
= = =   

   
  (2.30) 

+ Weight function 

dh(t) d1(t)
g(t) K. K. (t)

dt dt
= = = 

    
(2.31) 

 Description of the time characteristics of the amplification stage is 

presented in Figure 2.12. 

 

 

 

 

 

Figure 2.12. Time characteristics of the amplification stage 

- Frequency characteristics 

Frequency phase amplitude characteristics:  

p j
W(j )= W(p) K

= 
 =

  
(2.32) 

Frequency amplitude characteristics:    

A() = K    (2.33) 

Frequency amplitude logarithmic characteristic:   

L() = 20lgK  (2.34) 

Frequency phase characteristics:     

() = 0  (2.35) 

Description of the frequency characteristics of the amplifier stage is 

presented in Figure 2.13. 

h(t) 

t 
K.δ(t)  

g(t) 

t 

K.1(t) 

1(t) 

0 0 

(b) Đặc tính xung (a) Đặc tính quá độ 
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Figure 2.13. Frequency characteristics of the amplifier stage 

From the characteristics of the amplification stage, we see that the 

amplification stage is only responsible for amplifying the signal K times; The 

input and output signals of the amplifier stage are in phase with each other. 

b) Inertia stage 

- Differential equations 

The inertial step (first order) is a typical kinematic step whose differential 

equation has the form: 

dy(t)
T y(t) Ku(t)

dt
+ =

     
(2.36) 

In which: K is the transmission coefficient and T is the time constant of 

the inertial link. 

Examples of elements equivalent to inertial stages: Magnetic amplifier, 

DC generator, RC and LR circuits, 2-phase and 3-phase asynchronous motors if 

the output is angular speed, heat furnace, spring - damper system, ... 

- Transfer function 

Laplace transform both sides of equation (2.36), setting the ratio of output 

quantity and input quantity, we obtain the transfer function: 

Y(p) K
W(p)

U(p) Tp 1
= =

+      
(2.37) 

- Time characteristics 

+ Transient function 

t
1 T

K 1
h(t) L . K. 1 e

Tp 1 p

−
−

  
= = −    +        

(2.38) 

+ Weight function 

t

T
dh(t) K

g(t) .e
dt T

−

= =
      

(2.39) 

Description of the time characteristics of the inertial link is presented in 

Figure 2.14. 

0 

jQ(ω) 

P(ω) 
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 

A() 
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K 
lg 

L() 

0 

 

φ(ω) 
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W(j) 
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 Figure 2.14. Time characteristics of the inertial link 

- Frequency characteristics 

+ Frequency phase amplitude characteristics 

2 2 2 2p j

K K K T
W(j ) W(p) j.

Tj 1 1 T 1 T= 

− 
 = = = +

+ + +   
(2.40) 

+ Frequency amplitude characteristics  

2 2

2 2

K
A( ) P ( ) Q ( )

T 1
 =  +  =

 +     

(2.41) 

To approximate the Nyquist plot and frequency amplitude characteristics, 

we let the variation from 0÷, then calculate some P() and Q() values as 

shown in table 2.1. 

The Nyquist diagram of the inertial link is the lower half of the circle with 

center (K/2, j0), radius K/2. 

+ Frequency amplitude logarithmic characteristics 

2 2L( ) 20lgA( ) 20lgK 20lg 1 T =  = − +    (2.42) 

To draw the amplitude Bode plot, we let  the variation from 0 to , 

determine the corresponding L() values and then show it on the graph. 

Table 2.1. Value of frequency characteristics according to ω 

 0 ... 1 T ...  

P( ) K ... K/2 ... 0 

Q( ) 0 ... -K/2 ... 0 

A( ) K ... K/ 2  ... 0 

( ) 0 ... -45 0 ... -90 0 

Steps to draw an approximate amplitude Bode chart: 

Step 1: Draw two asymptotes 

 When 0 <  1/T: Because
2 2

0
lim 20lg T 1 20lg1 0
→

 +  = , should: 

T 

t 

K 

h(t) 

0 

t 

K/T 

g(t) 

T 0 
(a) (b) 
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L1() = 20lgK 

When  1/T: Because 
2 2lim 20lg T 1 20lg T

→
 +   : 

L2 () = 20lgK - 20lgT 

Thus we get: 

1

2

L ( ) 20lgK                  khi 0< 1/T
L( )

L ( ) 20lgK - 20lg T   khi 1/T 

 = 
 = 

 =      

(2.43) 

 

 

 

 

 

Figure 2.15. Nyquist plot   

 

 

 

 

 

Figure2.16. Frequency amplitude characteristics 

Step 2 : Determine the slope of the asymptotes 

The slope of line L1() is: 0 [dB/dec], because it is parallel to the 

horizontal axis. 

The slope of line L2() is: 

According to formula (2.25), choose 2=101, then the slope of line L2(ω): 

2 2 2 2 1 1

2 2 1 1

L ( ) L ( ) 20lgK 20lg10 T 20lgK 20lg T
tg 20[dB / dec]

lg( ) lg( ) lg10 lg

 −  −  − + 
 = = = −

 −   − 

 Step 3 : Determine the folding frequency ωG 

L1() and L2() intersect at point G, the frequency corresponding to that 

point is called the folding frequency ωG . At point G we have L1(G) = L2(G ), 

that is, 20lgK = 20lgK - 20lg T, so G = 1/T. 

Step 4: Determine the maximum amplitude error L(G ) 

The difference L(G) between the exact line and the asymptote at point G is: 

0 

A() 

1/T 

K 

K / 2   

W(j) 

→ 

0 

jQ() 

P() 

-K/2 

K/2 

1/T 

=0 
K 
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2 2
g 1 2

1
L( ) L ( ) L ( ) 20lgK 20lgK 20lg T ( ) 1 20lg 2 3[dB]

T
  =  −  = − + + = =
 

From the steps above, we can draw the amplitude Bode plot of the inertial 

link as depicted in Figure 2.17 with the exact line following the asymptote.
 

+ Frequency phase characteristics   

Q( )
( ) arctg arctg T

P( )


  = = − 

      
(2.44) 

According to table 2.1, for ω varying from 0 ÷ ∞, we can draw the 

frequency phase characteristics as described in figure 2.18. 

 

 

 

 

 

 

Figure 2.17. Amplitude Bode plot 

 

 

 

 

 

Figure 2.18. Frequency phase characteristics 

Through examining the inertial phase, we can draw a number of 

observations: 

From the transition function h(t) of the inertial link, we see that the 

inertial link does not immediately reach the K value but gradually approaches 

the K value according to the exponential law (so the inertial link is also called a 

non-cyclic link). Thus, the process of accumulating energy and releasing energy 

does not occur at the same time, causing the phenomenon of inertia. 

From the weight function g(t) of the inertial link, we see that when the 

transition function reaches a set value, the weight function will decrease to zero, 

meaning that at this time the inertial link is released from inertia. 

Analyzing the timing characteristics of the inertial link, we see that the 

smaller the time constant T, the faster the output response reaches the 

established value. 

ωG = 1/T 

φ(ω)
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From the frequency amplitude characteristic A(ω), we see that the inertial 

stage cannot work with high-frequency signals (the A(ω) characteristic is like a 

low-pass filter). 

From the frequency phase characteristics (ω), we see that the output 

signal of the inertial link is always slower in phase than the input signal by an 

angle varying from 0÷π/2 according to the change of ω, meaning that the inertial 

link has a slow impact. 

c) Oscillating stage 

- Differential equations 

The oscillation stage is a typical kinematic stage whose differential 

equation has the form: 

2
2

2

d y(t) dy(t)
T 2 T y(t) K.u(t)

dtdt
+  + =

    
(2.45) 

In which: T is the time constant; K is the transmission coefficient; ξ is the 

damping coefficient (0 < ξ < 1). 

Examples of elements equivalent to oscillation stages: RLC circuit 

(example 1.2.1); In an independently excited DC motor, the input quantity is the 

armature voltage, the output quantity is the rotational angular speed; elastic 

mechanical system; gyroscope; … 

- Transfer function 

Laplace transform both sides of equation (2.45), setting the ratio of output 

quantity and input quantity, we obtain the transfer function: 

2 2

Y(p) K
W(p)

U(p) T p 2 Tp 1
= =

+  +     

(2.46) 

We can express (2.46) as: 

2
n

2 2
n n

K
W(p)

p 2 p


=

+  +       

(2.47) 

Where: n

1

T
 = is the natural oscillation frequency. 

- Time characteristics 

+ Transient function 

2
1 n

2 2
n n

K 1
h(t) L .

pp 2 p

−  
=  

+  +       

(2.48) 

 Consider the cases of changing the damping coefficient ξ. 
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If ξ = 0, then 

2
1 n

2 2 2 2
n n

K 1 p
h(t) L K

pp(p ) p

−    
= = −   

+  +  
 

Looking up the Laplace transform table, we find: 

nh(t) K(1 cos t)= −       (2.49) 

Thus, in the case ξ = 0, the transient response is an undamped oscillation 

form with natural oscillation frequency ωn . 

 If 0 < ξ < 1, polynomial denominator: 
2 2

2 n nH (p) p(p 2 p )= +  + , then 

the (extreme) solution of the equation H2(p) = 0 is (Figure 2.19): 

2
1 2,3 n n dp 0;  p j 1 j= = −    −  = −    

Applying Heviside's formula to expression (2.48) and transforming, we find: 

t
d d

d

h(t) K. 1 e (cos t sin t)− 
= −  +  

      

(2.50) 

 In there: n. =  ; n

1

T
 = ;

2
d n . 1 =  −   

Can be rewritten (2.50) as: 

t

d
2

e
h(t) K 1 sin( t )

1

− 
= −  +  

 −  

     (2.51) 

In which: 
21

arctg
− 

 =


or cos = . 

Thus, in the case 0 << 1:The transient response is an oscillation form 

with amplitude decreasing according to an exponential law. The larger ξ is (the 

closer the pole is to the real axis), the faster the oscillation decreases. 

 

 

 

 

 

 

Figure 2.19. The pole of the link vibrates 
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If ξ = 1, the characteristic equation has a double solution: p1 = p2 = -1/T: 

2 2
n n

2 2
nn n

K 1 1
H(p) K

p pp(p ) (p )

  
= = − − 

+ + + 
 

Looking up the Laplace transform table, we get: 

n nt t
nh(t) K 1 e te− − = − −       (2.52) 

If ξ > 1, the characteristic equation has two simple solutions:  

p1 = -1/T1 and p2 = -1/T2 . Then: 1 2

1 2

K / T T
H(p)

p(p 1/ T )(p 1/ T )
=

+ +
 

 Transforming the inverse Laplace, we get: 

1 2t/T t/T1 2

1 2 1 2

T T
h(t) K 1 e e

T T T T

− − 
= − + 

− −      

(2.53) 

With the values of ξ, we can draw the transient characteristics of the 

oscillating stage as depicted in Figure 2.20. 

 

 

 

 

 

 

 

Figure 2.20. Family of transient characteristics 

 

 

 

 

 

 

 

Figure 2.21. They feature pulse transients 

+ Weight function 

Corresponding to the expressions of the transition function, we find the 
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weight function: 

If ξ = 0: n n

dh(t)
g(t) K sin t

dt
= =    

If 0 <  < 1:  
2

1 .tn
d

d

dh(t)
g(t) L W(p) K e sin t

dt

− −
= = = 


 

If  = 1: t/T

2

dh(t) K
g(t) te

dt T

−= =  

If  > 1: 1 2t/T t/T

1 2

dh(t) K
g(t) (e e )

dt T T

− −
= = −

−  

With the values of ξ, we can draw the pulse characteristics of the 

oscillating stage as depicted in Figure 2.21. 

- Frequency characteristics 

+ Frequency phase amplitude characteristics 

2 2p j

K
W(j ) W(p)

1 T j2 T= 
 = =

−  +        

(2.54) 

 Multiplying the complex conjugate of the denominator expression by both 

the numerator and denominator of W(jω) we get:
 

2 2

2 2 2 2 2 2 2 2 2 2 2 2

K(1 T ) K2 T
W(j ) j

(1 T ) 4 T (1 T ) 4 T

− − 
 = +

− +   − +     

(2.55) 

Let ω vary from 0 ÷ ∞ with different ξ, we will build a Nyquist diagram 

of the oscillating stage as depicted in Figure 2.22. 

+ Frequency amplitude characteristics 

( ) ( )
2 22 2

K
A( )

1 T 2 T

 =

−  +       

(2.56) 

Find the resonance frequency by solving the equation 
dA( )

0
d


=


: 

ch

21
. 1 2

T
 = − 

      
(2.57) 

From (2.57) we see:
2 2 2 2 2
ch ch.T 1 2   .T = −    always positive. So A(ω) 

max when 
2 1

1-2 0  hay  
2

    . 

Substituting the value ωch into (2.56), we will find the maximum value of 
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A(ω) according to  : 

max
2

K
A ( )

2 1
 =

 − 
     (2.58) 

From here we see that, the smaller ξ is, the larger A(ω) is. When ξ → 0 

then Amax(ω) → ∞ means that the curve A(ω) is discontinuous as depicted in 

figure 2.23. 

+ Frequency amplitude logarithmic characteristics 

2 2 2 2 2 2L( ) 20lgA( ) 20lgK 20lg (1 T ) 4 T =  = − − +     (2.59) 

 

 

 

 

 

 

 

Figure 2.22. Nyquist plot Figure  

 

 

 

 

 

 

 

2.23. Frequency amplitude characteristics 

The steps to approximate the amplitude Bode diagram of the oscillating 

phase are similar to the inertial phase with two asymptote lines: 

When 0 <1/T:  

Because
2 2 2 2 2 2

0
lim 20lg (1 T ) 4 T 20lg1 0
→

− +    = should: 

L1( ) = 20lgK 

When1/T:  

Because 
2 2 2 2 2 2 2 2lim 20lg (1 T ) 4 T 20lg T 40lg T

→
− +     =  : 

W(jω) 

n 

0 

=0 

jQ(ω) 

P(ω) K → 

K
2

 

ξ= 0,2 

ξ = 0,8 

ξ  = 0,6 

 

1/T 

K 

A() 

0 

ξ = 0,2 
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L 2 ( ) = 20lgK - 40lg T 

Thus we get: 

1

2

L ( ) 20lgK                  khi 0 < 1/T
L( )

L ( ) 20lgK - 40lg T   khi 1/T 

 = 
 = 

 =      

(2.60) 

The only difference here is that L2() has a slope of -40dB/dec. With 

different values (the lower, the larger, the L() characteristic has different 

shapes. 

The logarithmic characteristic of frequency amplitude is described in 

Figure 2.24. 

 

 

 

 

 

Figure 2.24. Characteristics of frequency amplitude logarithm   

 

 

 

 

 

Figure 2.25. Frequency phase characteristics 

+ Frequency phase characteristics 

2 2

2 T
( ) arctg

1 T


  = −

−      
(2.61) 

Frequency phase characteristics with different ξ values are described in 

Figure 2.25. 

Through examining the oscillation stage, we can draw a number of 

observations: 

From the transient function h(t) of the oscillating stage, we see that the 

oscillating stage does not immediately reach the value K but oscillates towards 

the value K. For the system to oscillate, the system must have a kinetic energy 

accumulator and a potential accumulator. energy, for example in an RLC circuit, 

C stores potential energy and L stores kinetic energy. 

From the weight function g(t) of the oscillating link, we see that when the 

transition function reaches a set value, the weight function will decrease to zero, 

meaning that at this time the oscillating link is released from inertia. 

- 40 dB/dec 
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From the frequency amplitude characteristic A(ω), we see that the 

oscillator stage cannot work with high-frequency signals (A(ω) characteristic is 

like a low-pass filter) and reaches the value Amax(ω) at ωch . 

From the frequency phase characteristics (ω), we see that the output 

signal of the oscillating link is always slower in phase than the input signal by 

an angle varying from 0 ÷ π according to the change of ω, that is, the oscillating 

link is reactive. slow movement. 

d) Late stitching 

- Differential equations 

The delay stage is a typical dynamic stage where after a certain period of 

time the output quantity repeats the input quantity without signal distortion. 

The differential equation of the hysteresis has the form: 

y(t) u(t )= −       (2.62) 

In which: τ is the delay time. 

Examples of elements equivalent to delay stages: Conveyor belt, heat pipe 

if losses are ignored... 

 - Transfer function 

.pY(p)
W(p) e

U(p)

−= =
     

(2.63) 

 - Time characteristics 

 + Transient function 

1 .p1
h(t) L .e 1(t )

p

− − 
= = −  

     

(2.64) 

+ Weight function 

 1 .pg(t) L e (t )− −= =  − 
    

(2.65) 

 The transient characteristics and impulse characteristics of the hysteresis 

link are described in Figures 2.26a and 2.26b, respectively. 

 

    

 

 

 

Figure 2.26. Time characteristics of the delay stage 

h(t) 

t 

0 

1 

g(t) 

t 

0 τ τ 
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 - Frequency characteristics 

 + Frequency phase amplitude characteristics 

j

p j
W(j ) W(p) e (cos jsin )− 

= 
 = = = −  + 

   
(2.66) 

 + Frequency amplitude characteristics 

A( ) 1 =       (2.67) 

 The Nyquist plot and frequency amplitude characteristics of the hysteresis 

are depicted in Figures 2.27a and 2.27b, respectively. 

 

     

 

 

 

Figure 2.27. Nyquist plot and frequency amplitude characteristics of the 

hysteresis link 

 + Frequency amplitude logarithmic characteristics 

L( ) 20lgA( ) 0 =  =     (2.68) 

 + Frequency phase characteristics 

( )  = −       (2.69) 

 The frequency amplitude logarithm and frequency phase characteristics of 

the delay link are depicted in Figures 2.28a and 2.28b, respectively. 

 

 

 

 

Figure 2.28. Characteristics of logarithm of frequency amplitude and 

frequency phase of delay link 

 We see that the delay stage does not change the signal shape , but the 

delay stage always has an output signal that is out of phase compared to the 

input signal. 

 2.2.3. Integral stage 

 - Differential equations 

Theintegral step is a typical kinematic step where the differential equation 

has the form: 

 P(ω) 

jQ(ω) 

1 0 

1 

A(ω)
 

ω 

0 

W(jω) 

(b)
 (a)

 

L(ω) 

0 

ω 
0 

ω φ(ω) 

α = arctgτ 

(a) (b) 
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dy(t)
K.u(t)

dt
=      or     ( )

t

0

1
y(t) u t dt

T
= 

   

(2.70) 

In which:  

T = 1/K is the integration time constant 

K is the transmission coefficient 

Examples of elements equivalent to the integral stage: Water tank - valve 

system, lead screw - nut set , speed changer box (input is angular speed and 

output is rotation angle)... 

- Transfer function 

K 1
W(p)

p Tp
= =

     
(2.71) 

- Time characteristics 

+ Transient function 

1 K 1
h(t) L . K.t

p p

−  
= = 

      

(2.72) 

+ Weight function 

dh(t)
g(t) K

dt
= =      (2.73) 

 The transient characteristics and impulse characteristics of the integrating 

stage are described in Figures 2.29a and 2.29b, respectively. 

        

 

 

 

Figure 2.29. Time characteristics of the integration stage 

- Frequency characteristics 

+ Frequency phase amplitude characteristics 

( )
j
2

K 1
W j j e

T


−

 = − =
      

(2.74) 

+ Frequency amplitude characteristics 

K
A( ) =


      (2.75) 

 

t 

h(t) 

    0 

t 

g(t) 

K 

0 
(a) (b) 

K 

1 



67 
 

 

 

 

 

Figure 2.30. Nyquist plot and frequency-amplitude characteristics of the 

integration stage 

+ Frequency amplitude logarithmic characteristics 

K
L( ) 20lg 20lgK 20lg = = − 

    
(2.76) 

The frequency amplitude logarithm characteristic L() always has the 

slope: tg 20dB / dec. = −  At c the characteristic L() cuts the horizontal axis so 

L(c) = 0, deducing the cutoff frequency c = K. 

+ Frequency phase characteristics 

K /
( ) arctg

0 2

−   
  = = − 

      
(2.77) 

 The frequency amplitude logarithm and frequency phase characteristics of 

the integration stage are described in Figures 2.31a and 2.31b, respectively. 

 

 

 

 

Figure 2.31. Logarithmic characteristics of frequency amplitude and 

frequency phase characteristics 

From the time characteristics of the integration stage, we see that the 

integration stage has memory properties. That is, the integration stage will 

remain in the same state at the time the input stops. 

The transition function of the integral phase increases to infinity, so the 

integral phase tends to cause instability. 

The phase-frequency characteristics of the integration stage show that the 

output signal is always slower in phase than the input signal by an angle of π /2. 

2.2.4. Differential stitching 

- Differential equations 

The differential step is a typical dynamic step where the output quantity is 

proportional to the derivative of the input quantity. 

The differential step is considered in two cases: 

(a) 

L() 

 

0 

20lgK 

c = K 

-20dB/dec 

0 

() 

 

- /2 
(b) 

jQ(ω) 

P(ω) 

0 → 

→0 

 

0 

A() 

(a) (b) 

W(jω) 
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Ideal differential: 

du(t)
y(t) K.

dt
=

     
(2.78) 

First order differential stage: 

du(t)
y(t) K. T u(t)

dt

 
= + 

       
(2.79) 

In which: T is the differential time constant, K is the transmission 

coefficient. 

Examples of elements equivalent to the differential stage: Transformer, 

RL four-pole network, CR four-pole network. 

- Transfer function 

Ideal differential: 

Y(p)
W(p) K.p

U(p)
= =

      
(2.80) 

First order differential stage: 

W(p) = K(Tp + 1)       (2.81) 

- Time characteristics 

+ Transient function 

Ideal differential: 

d1(t)
h(t) K K. (t)

dt
= = 

     
(2.82) 

First order differential stage: 

dh(t)
h(t) K.1(t) KT K.1(t) KT. (t)

dt
= + = + 

  
(2.83) 

 + Weight function 

Ideal differential: 

dh(t) d (t)
g(t) K

dt dt


= =

     
(2.84) 

First order differential stage: 

d (t)
g(t) K T (t)

dt

 
= +  

       
(2.85) 

The timing characteristics of an ideal differential step are described in 

Figure 2.32. 
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Figure 2.32. Time characteristics of the ideal differential step 

- Frequency characteristics 

+ Frequency phase amplitude characteristics 

Ideal differential step:   

p j
W(j ) W(p) jK

= 
 = = 

    
(2.86) 

First order differential stage:    

W(j ) K j KT = +       (2.87) 

+ Frequency amplitude characteristics 

Ideal differential:  

A( ) = K.       (2.88) 

First order differential stage:   

2 2A( ) K 1 T = +       (2.89) 

+ Frequency amplitude logarithmic characteristics 

Ideal differential:  

L( ) = 20lgK      (2.90) 

First order differential stage:   

2 2L( ) 20lgK 20lg 1 T = + +     (2.91) 

The L( ) characteristic is built similarly to the inertial link: 

1
20lgK                      0

T
L( )

1
20lgK 20lg T      

T


 

 = 
 +  
    

(2.92) 

+ Frequency phase characteristics 

Ideal differential:  

K
( ) arctg

0 2


  = =

      
(2.93) 

h(t) 

t 

0 

K.δ(t)
 

g(t) 

t 

0 

K.δ’(t)
 

(a) (b) 
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First order differential stage:  

( ) arctg T  =        (2.94) 

 The frequency characteristics of the ideal differential and first-order 

differential are described in Figure 2.33 and Figure 2.34, respectively. 

 

  

 

 

Figure 2.33. Frequency characteristics of the ideal differential stage 

 

 

 

 

Figure 2.34. Frequency characteristics of the first-order differential stage 

The temporal characteristics of the differential stage show that the 

differential stage tends to cause instability, because its transient function and 

weight function increase to infinity. 

The differential step has the output signal always ahead of the input signal 

by an angle equal to π/2 (ideal differential) or an angle varying from 0 ÷ π/2 

according to the change in ω (first order differential). This is an outstanding 

feature of the differential stage that makes the system act quickly. 

 2.3. CHAPTER 2 EXERCISES 

 2.3.1. Sample solution exercises 

Exercise 1. Find the transition function of the system with the following 

transfer function: 

H(p) K
W(p)

U(p) Tp 1 K
= =

+ +
 

The answer: 

When u(t) = 1(t) then U(p) = 1/p. Then: 

K 1
H(p) .

Tp 1 K p
=

+ +
 

The inverse Laplace transform is found: 

 1 1 K 1
h(t) L H(p) L .

Tp 1 K p

− −  
= =  

+ + 
 

L() 

 

0 

20lgK 

+20dB/dec 

1/T 

 

0 

() 

/2 

/4 

1/T 

jQ(ω) 

0 

W(j) 

 = 0 

K 

P(ω) 

A() 

 0 

K 
arctgK 

A() 

 
0 

P(ω) 

→ 

jQ(ω) 

W(j) 

0 

 = 0 

L() 

 
0 c = 1/K 

+20dB/dec 

 

0 

() 

/2 

 

arctgK 
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Or:  1 K 1 K 1
h(t) L . .

1 K p 1 K p (1 K) / T

−  
= − 

+ + + + 
 

Looking up the Laplace transform table, we get: 

1t/TK
h(t) (1 e )  khi t 0

1 K

−= − 
+

 

In there: 1

T
T

1 K
=

+
 

 The transient characteristics are described in Figure 2.35. 

 

 

 

 

 

Figure 2.35. Transient characteristic h(t) 

Exercise 2. Determine the transfer function of an open system with a 

Bode plot as depicted in Figure 2.36. 

 

 

 

 

 

Figure 2.36. Amplitude Bode plot of open system 

The answer: 

The transfer function has the form: 

K
W(p)

Tp 1
=

+  

In there:

 

20logK 40 K 100=  = ; 

1 1
T 0,01.

100
= = =


 

So the transfer function of the open system is: 

100
W(p) .

0,01p 1
=

+
 

h(t) 

1 
K

1 K+

 

h(t) 

u(t) 

t 
0 

Sai số 

 

=100 

L() 

-20dB/dec 

0 

40 dB 
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2.3.2. Self-explanatory exercises 

1. Find the impulse response of the system with the following transfer 

function 

2

1
W(p)

(p 1) (p 2)
=

+ +
 

2. Determine the transition function for the system with the following 

transfer function 

5(1 0,4p)
W(p) = 

(p 1)(0,2p 1)

−

+ +
 

3. Determine the output response for the system with the following 

transfer function, with u(t) = e-t 

2

2

p 9p 18
W(p) = 

p 6p 8

+ +

+ +
 

 

4. Give the command transmission function and the missile command 

transmission line: 

K
W (p)

1 pT






=
+  

 With Kλ = 15 and Tλ = 0.04, please tell us what step the above transfer 

function is equivalent to? Find the transition function and draw the Nyquist 

diagram of the system? 

5. Draw the amplitude Bode and phase Bode plots of the system with the 

following transfer function 

100(0,1p 1)
W(p)

p(0,01p 1)

+
=

+
 

6. Give the missile's target angular coordinate tracking system as 

described in Figure 2.37 

 

 

 

Figure 2.37. Missile target angular coordinate tracking system 

In there 1
TĐmt 1

2

(1 pT )
W (p) K

p(1 pT )

+
=

+
. Identify the typical kinetic stages that 

create WTĐmt (p). 

WTĐmt(p) 
εmt ε’

mt 

- 
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Let K1 = 5; T1 = 0.1; T2 = 0.08; Find the weight function and draw the 

Nyquist diagram of the closed system in Figure 2.37. 

7. Give three transient characteristic curves of the missile as depicted in 

figure 2.38, in which: Line (1) is a missile with static stability, lacking ASS; 

track (2) is a missile with no static stabilization and lacks ASS; path (3) is a 

missile with ASS (with ASS being the on-board stabilization system). 

 

 

 

 

 

 

 

Figure 2.38. Transit characteristics of rockets 

From the point of view of automatic control, let's compare the three 

transient characteristic curves. 

8. Draw the Nyquist plot of the system with the following transfer 

function 

2

2

2p 5p 1
W(p)

p 2p 3

+ +
=

+ +
 

9. Show the block diagram of the satellite navigation system as depicted 

in Figure 2.39. In essence, this system will control the satellite's telescope to 

always follow a certain object in space regardless of interfering factors. Suppose 

the natural oscillation frequency of the system is ωn = Kt Ka Kb J
-1. Find the 

transfer function and transition function of the system. 

 

 

 

 

 

 

Figure 2.39. Satellite navigation system 

Answer : 

2
t a b n

2 2 2
t a b n

K K K
W(p)

Jp K K K p


= =

+ +
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10. Use the inverse Laplace transform to find the transient response of the 

system when the input signal is a function of 1(t). 

K(p 2)
W(p)

(p 1)(p 3)

+
=

+ +
 

 

Conclusion of chapter 2 

This chapter has presented the concept of the dynamic characteristics of a 

linear automatic control system, including time characteristics and frequency 

characteristics. This chapter also presents how to build the dynamic 

characteristics of the basic stages and the system. Students must master the 

dynamic characteristics of the basic stages and how to build the dynamic 

characteristics of the system to be able to well solve the problem of analyzing, 

surveying, and evaluating the automatic control system that will be presented in 

the following chapters. 

 

Chapter 2 review questions 

Question 1: Why is it called a typical signal? What are those signals? 

Question 2: Analyze the response and dynamic characteristics of the system. 

Question 3: Differential equations and transfer functions of typical 

kinematic stages. 

Question 4: Analyze the time characteristics of typical dynamic stages. 

Question 5: Analyze the frequency characteristics of typical dynamic stages. 
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Chapter 3 

SURVEY OF THE STABILITY OF THE AUTOMATIC CONTROL SYSTEM 

 The first requirement for an automatic control system is that the system 

must maintain a stable state when affected by input signals and influenced by 

noise on the system. For linear systems, the characteristics of the transient 

process do not depend on the value of the stimulus. The stability of a linear 

automatic control system does not depend on the type or value of the input 

signal, and in a linear system there exists only one equilibrium state. This 

chapter deals with methods to consider the stability of linear automatic control 

systems according to standards. 

3.1. GENERAL OVERVIEW OF THE STABILITY OF 

AUTOMATIC CONTROL SYSTEMS 

3.1.1. Stability of the automatic control system 

a) Definition 

Stability investigation is one of the important tasks when analyzing a 

system. That task always comes before quality assessment. Because an unstable 

system is not capable of working, there is no longer a duty to evaluate quality. 

Example 3.1.1. Consider the state of the sphere located at three different 

positions relative to the terrain as depicted in figure 3.1. 

 

 

 

 

 

 

 

 

Figure 3.1. The state of the sphere located in three different positions 

 When an external force is applied to the sphere, it will change position. 

 For the case of Figure 3.1a, we say the system is stable because: after the 

effect of the external force ends, after a certain period of oscillation around the 

equilibrium position, the ball will return to its original position with the smallest 

potential energy. 

 In the case of Figure 3.1b, we say the system is unstable because the ball 

dropped from the top is not able to return to its original position when the effect 

of the external force ends. 

y(t) = y0
 

y(t) = y0e
-αt 

 

 

0 y(t) 

t 

  

0 

t 

y(t) 

 

 

0 

t 

y(t) 

y(t) = y0e
αt 

(a) (b) (c) 
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 In the case of Figure 3.1c, we say the system is at the stable boundary 

because, after the effect of the external force ends, the relative position between 

the ball and the terrain is the same as the original. 

 Thus, we can define stability as: 

 The stability of a system is the ability to automatically return to a pre-

established state after the impact that disrupts that established state is lost. 

 b) Mathematical basis for system stability 

Investigating the stability of a linear automatic control system can be done 

through analyzing mathematical expressions describing the dynamic process of 

the system. 

The dynamic properties of an automatic control system are often 

represented by a general differential equation of the form: 

n i m jn m

i jn i m j
i 0 j 0

d y(t) d u(t)
a b

dt dt

− −

− −
= =

= 
    

(3.1) 

 In which:  

u(t), y(t) are the input quantity and output quantity, 

ai, bj are the coefficients of the differential equation (i = 0, …,n; j = 0, …,m). 

Equation (3.1) describes a system consisting of two processes, a steady 

state and a transition process, characterized by solutions: 

y(t) = y0 (t) + yqd (t)       (3.2) 

In there: 

y0(t) is a particular solution of (3.1) when there is a right-hand side, 

characterizing the establishment process. 

yqd(t) is the general solution of (3.1) when the right side is zero, 

characterizing the transition process. 

process is always stable, so the stability of the system depends only on the 

transient solution. Thus, the remaining problem only needs to consider the 

transient process yqd(t). If the system is to be stable, the transient solution must 

disappear over time. 

So the condition for the system to be stable is: 

qđ
t
lim y (t) 0
→

=       (3.3) 

To have a basis for considering stability, we have the following 

definitions: 

A stable system is one that has a gradual damping transition over time. 

An unstable system is one whose transitions gradually increase over time. 
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A system at the stable boundary is a system with a constant transition or 

undamped oscillation. 

 

 

 

 

 

 

Figure 3.2. Transient process of the control system 

Figure 3.2 illustrates the transition process with the cases of a stable 

system (Figure 3.2a), an unstable system (Figure 3.2b), and a system at the 

stable border (Figure 3.2c), in which there are two characteristic lines: line (1) is 

a non-oscillating system, and line (2) is an oscillating system. 

In essence, determining the stability of the system means finding the 

solution to the differential equation describing the state of the system. The 

solution of the differential equation includes two components, in which the 

transition solution has the form: 

i

n
p .t

qđ i

i 1

y (t) C e
=

=       (3.4) 

 In which:  Ci is the integration constant; 

   pi is the solution of the characteristic equation: 

A(p) = a0 .p
n + a1 .p

n-1 + … +an = 0     (3.5) 

Now according to (3.3) we have: 

i

n
p .t

qđ i
t t

i 1

lim y (t) lim C e
→ →

=

=       (3.6) 

We consider pi in expression (3.6) to be the solution of the characteristic 

equation (3.5), it can be a real solution or a conjugate complex solution. 

When pi are real roots pi = i : 

 

 

 

 

 

 

yqđ(t) 

t 

0 

yqđ (t) 

t 

0 

(1) 

(2) 

(a) 

t 

yqđ(t) 

0 

(1) 

(2) 

(b) (c) 

(1) 

(2) 

(3.7) 

it
qđ i

t t
i

i

i

lim y (t) lim C .e

0

                C



→ →
=





= 






 

if αi< 0 The system is stable 

if αi = 0 The system is at the stable boundary 

if αi> 0 The system is unstable 
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The illustrative graph of expression (3.7) is depicted in figure 3.3. 

 

 

    

 

Figure 3.3. Represent yqd (t) when the characteristic equation has real 

solutions 

When pi are pairs of conjugate complex solutions pi,i+1 = ijωi : 

Since pi is a pair of conjugate complex roots, the transition solution is 

equal to: 

it
qđ(i,i 1) qđ,i qđ,i 1 i iy (t) = y (t) + y (t) = 2C e cos( t) 

+ +    (3.8) 

 Then, we have: 

 

 

 

 

 

 The graphical representation of expression (3.8) is depicted in figure 3. 4. 

 

 

 

 

 

 

Figure 3.4. Represent yqd (t) when the characteristic equation has pairs of 

complex solutions 

Example 3.1.2. Given a control object that is a rocket with a transfer 

function equal to: 

TL 2 2

K
W (p)

T p 2 Tp 1

−
=

+  +
 

In which:  

K is the transmission coefficient, T is the time constant (T > 0), ξ is the 

attenuation coefficient (0 < ξ < 1). Let's examine the stability of the rocket. 

yqđ(t) 

t 

0 

αi< 0 (stable) 

αi> 0 (unstable) 

∑Ci 
αi  = 0 (stable boundary) 

 

yqđ(t) 

0 

t 

unstable 

stable boundary 

t 

0 

yqđ(t) 

stable 

αi< 0
 

αi> 0
 

αi  = 0
 

 

(3.9) 

if αi< 0 The system is stable 

if αi = 0 The system is at the stable boundary 

if αi> 0 The system is unstable 

 

it
qđ i i

t t
i

i i

i

lim y (t) lim 2C e cos( t)

0

                 2C cos( t)



→ →
=  =





= 






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The answer: We have the characteristic equation. 

A(p) = T2 p2 + 2ξTp + 1 = 0 

Solve the above characteristic equation to find the pair of complex 

solutions: 

2

1,2

1
p j

T T

− 
= −   

Then the transient solution is calculated according to formula (3.8) by: 

2t
T

qđ

1
y (t) 2.e .cos t

T

 
− 
 

 − 
 =
 
 

 

Using expression (3.9) we have: 

2t
T

qđ
t t

1
lim y (t) lim2.e .cos t 0

T

 
− 
 

→ →

 − 
 = =
 
 

 

So by definition, the above missile system is stable. 

Here we draw the following conclusions: 

 The system is stable if all the roots of the characteristic equation have a 

negative real part (all the roots lie on the left side of the complex plane), i.e.: 

 iRe p 0 with i 1,n =  

The system is unstable if there is only one solution of the characteristic 

equation with a positive real part (at least one solution lies on the right side of 

the complex plane, the remaining solutions lie on the left side of the complex 

plane), that is: 

i (1,n)  but  iRe p 0  

The system is at the border of stability if there is only one solution with 

zero real part, the remaining solutions have negative real part (at least one 

solution lies on the imaginary axis and the remaining solutions are on the left of 

the complex plane), it mean: 

j (1,n)  but  jRe p 0=  

Also i (1,n)  , i j _  iRe p 0  

On the solution distribution plane of the characteristic equation described 

in Figure 3.5, real solutions lie on the real axis Re, purely imaginary solutions p 

= j ω lie on the imaginary axis Im, solutions with negative real parts are all 

located at left half, and the solutions with positive real part are all located in the 

right half of the complex plane. 
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Figure 3.5. Solution distribution on the complex plane 

Based on that distribution, we can state the stability conditions of the 

system as follows:  

The necessary and sufficient condition for a linear automatic control 

system (closed or open) to be stable is that all solutions of the characteristic 

equation lie on the left half of the complex plane. If there is even one solution 

that lies to the right of the complex plane, the system is unstable. If there is even 

one solution located on the imaginary axis and the other solutions lie on the left 

half of the complex plane, then the system is at the boundary of stability.  

Thus, the virtual axis Im divides the solution plane into two regions: the 

left is the stable region, the right is the unstable region, and the virtual axis is the 

stable boundary.  

The disadvantage of the method of solving differential equations to 

evaluate the stability of the system is that it requires a lot of mathematical 

transformation tricks, creating a large amount of work, especially when solving 

hierarchical high differential equations.  

To overcome the above shortcomings, in practice, people use indirect 

stability assessment methods called stability standards. Often, use the following 

standards: Algebraic standards and frequency standards.  

The advantage of the above criteria is that there is no need to solve the 

differential equation, but it is still possible to determine both the cause of 

instability and the ability to ensure its stability.  

The above criteria are all based on how the solution of the characteristic 

equation A(p) = 0 is distributed on the complex plane to conclude the stability of 

the system. 

 3.1.2. Necessary conditions for the automatic control system to be stable 

 a) State the necessary conditions 

A system can always be described by a characteristic equation of the 

form: 

a0 .p
n + a1.p

n-1 + . . . + an = 0     (3.10) 

In which: n is the highest order of the characteristic equation (also the 

* 

Im 

Re 
0 

* 

* 

* 

* 

* 

* 

* 
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highest order of the tissue differential equationsystem description); ai are the 

coefficients of the characteristic equation (i 1, n)= . 

Stated : 

The necessary condition for the automatic control system to be stable is 

that all coefficients of the characteristic equation are positive (ai > 0). 

b) Prove 

According to mathematical basis, if the system is stable, the solutions of 

the characteristic equation will be: 

1 1 2,3 2 2 n np ;   p j ;   .  .  . ; p= − = −   = −  

In there: i 0 (i 1, n)  =  

Then are the coefficients of the characteristic equation positive or not? 

Indeed, if the characteristic equation (3.10) has n solutions, it can be 

expressed as: 

0 1 2 na (p p )(p p )...(p p ) 0− − − =
     (3.11) 

Substituting the above solution values we get: 

 0 1 2 2 2 2 na (p ) (p j )(p j ) ...(p ) 0+  +  −  +  +  +  =   (3.12) 

Continuing to expand and arrange in the form (3.10), we have: 

n n 1
0 1 na p a p ... a 0−  + + + =       (3.13) 

The coefficients 0 1 na ;  a ;  . . .; a   in expression (3.13) are always positive 

because the terms in (3.12) are positive and the calculation involves only 

addition and square. 

Therefore, when the system is stable, the coefficients of the characteristic 

equation must be positive. 

Example 3.1.3 . Consider the stability of systems with the following 

characteristic equations: 

a) 
3 2p 6p 3p 4 0+ + + = , the system can be stable. 

           b) 
3 2p 5p 3p 6 0+ − + = , the system is unstable, because a 2 = -3. 

c) 
33p 4p 2 0+ + = , the system is unstable, because a 1 = 0. 

 Conclusion: The coefficients (ai) of the characteristic equation are created 

by the values of the system parameters, so the stability of the system is 

determined through the parameters and does not depend on the state. of the 

system. 
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3.2. ALGEBRAIC STABILITY CRITERIA 

3.2.1. Routh standard 

a) State the Routh criterion  

Suppose a system is described by the following nth-order characteristic 

equation: 

n n 1
0 1 n 1 na .p a .p ... a .p a 0−

−+ + + + =     (3.14) 

 Then the Routh table has the form: 

0 2 4 6 8

1 3 5 7 9

0 2 4 6

1 3 5 7

0

1

a a a a a ...

a a a a a ...

b b b b ...

b b b b ...

... ... ... ...

z

z

 

Stated: The necessary and sufficient condition for a linear automatic 

control system to be stable is that all terms in the first column of the Routh table 

are positive. 

b) How to create a Routh table 

The first two rows of the Routh table contain the coefficients of the 

characteristic equation arranged as follows: the first row records terms with even 

indices starting from a0 , the second row records terms with odd indices starting 

from a1. Detail: 

0 2 4 6 8

1 3 5 7 9

a a a a a

a a a a a
 

From the third row of the Routh table onwards, each term is a fraction: 

Numerator: L is a quadratic determinant with a negative sign, with the 

first column of the determinant also being the first column of the two rows next 

to the row with the term being calculated, and its second column is the column 

next to it. To the right, the term being calculated is also from the two rows 

above. 

Denominator: All terms of a row have the same denominator, which is the 

first term of the row immediately above the row being calculated. 

 The Routh table has n+1 (n is the highest order of the characteristic 

equation). The number of elements in each row of the table will gradually 

decrease until the last two rows have one element left. Detail: 
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0 2

1 3
0

1

a a

a a
b

a

−

= , 

0 4

1 5
2

1

a a

a a
b

a

−

= ; … 

1 3

0 2
1

0

a a

b b
b

b

−

= , 

1 5

0 4
3

0

a a

b b
b

b

−

= ; … 

0 2

1 3
0

1

b b

b b
c

b

−

= , 

0 4

1 5
2

1

b b

b b
c

b

−

= ; … 

1 3

0 2
1

0

b b

c c
c

c

−

= , 

1 5

0 4
3

0

b b

c c
c

c

−

= ; … 

 c)Properties of the Routh table 

It is possible to multiply or divide all terms in the same row of the table 

by a positive number, and the calculation result remains unchanged. 

The number of times the signs of the terms in the first column of the table 

are changed is equal to the number of solutions of the characteristic equation 

with a positive real part (located to the right of the complex plane). 

If in the first column of the table there is a coefficient equal to zero, the 

system is also unstable. 

From the first column of the table, we can calculate the critical value of a 

certain variable parameter in the system (for example, the amplification 

coefficient). 

The Routh standard can be applied to consider stability for both closed 

and open systems with characteristic equations of any order. 

If the system contains a delay with a transfer function of the form 
pTe− , 

then we use the approximate Taylor expansion formula as follows: 
2 3

pT pT ( pT) ( pT)
e 1 ...

1! 2! 3!

− − − −
= + + + +  

Then we take the first two terms: 
pTe 1 pT−  −       (3.15) 

Example 3.2.1. Consider the stability of the system with the following 

characteristic equation: 

p 4 + 2p 3+ 8p 2 + 4p + 3 = 0 

The answer: 

Creating a Routh table based on the coefficients of the characteristic 

equation, we have:    

0 2

1

0

1 8 3

2 4 0

b b

b

c
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Calculate the terms from the third row onwards: 

0

1 8

2 4
b 6

2

−

= = , 2

1 3

2 0
b 3

2

−

= = , 1

2 4

6 3
b 3

6

−

= = , 0

6 3

3 0
c 3

3

−

= = . 

 Then, we have a complete Routh table as follows: 

1 8 3

2 4 0

6 3

3

3

 

We see that the terms in the first column of the Routh table are all 

positive. 

Therefore, the given system is stable. 

d) Some special cases 

- If the Routh table has the first term of a certain row equal to zero, the 

remaining coefficients of that row are non-zero 

Now we replace that zero term by an arbitrary very small positive number 

ε (ε → 0), then the calculation process continues. The values of the next terms 

depend on ε. 

Example 3.2.2. Consider the stability of the system with the following 

characteristic equation: 

p4 + 2p3+ 3p2 + 6p + 5 = 0 

The answer: 

Creating a Routh table based on the coefficients of the characteristic 

equation, we have:  

0 2

1

0

1 3 5

2 6

b b

b

c

 

Calculate the terms from the third row onwards: 

0

1 3

2 6
b 0

2

−

= = , 2

1 5

2 0
b 5

2

−

= = . 
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 We notice that the first term of the third row is zero, the remaining terms 

are non-zero. Therefore, we replace that zero term by some very small positive ε 

b0 = ε and continue calculating, we get: 

1

2 6

5 6 10
b

−
  −

= =
 

, 0

5

6 10
0

cc 5
6 10



−  −

= =
 −



. 

 Then the Routh table is found as follows: 

1 3 5

2 6

5

6 10

5



 −



 

We see the term 1

6 10
b 0

 −
= 


because ε is a very small positive 

number, so the first column of the Routh table has two sign changes. 

Therefore, the given system is unstable and the characteristic equation has 

two solutions lying to the right of the complex plane. 

- If the Routh table has all the terms of a certain row equal to zero 

 Then, establish an auxiliary polynomial A0(p) whose coefficients are the 

terms of the row preceding the row with all terms equal to zero. 

 Replace the row with all zero terms by another row whose terms are the 

coefficients of the polynomial 0dA (p)

dp
, then the calculation continues. 

Note: The solution of the auxiliary polynomial A0(p) is also the solution 

of the characteristic equation. 

Example 3.2.3. Considering the stability of the system, the characteristic 

equation is: 

p5 + 4p4 + 8p3 + 8p2 + 7p + 4 = 0 

 The answer: 

Creating a Routh table based on the coefficients of the characteristic 

equation and calculating the terms, we have: 
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5

4

3

2

1

p 1 8 7

p 4 8 4

p 6 6

p 4 4

p 0 0

 

We see that the Routh table has all terms in row p1 equal to zero, so we 

can form the auxiliary polynomial as follows: 

A 
0 
(p) = 4p 2 + 4 

 0dA (p)
8p 0

dp
= +  

The solution of the auxiliary polynomial A
0
(p) is also the solution of the 

characteristic equation: A
0 
(p) = 4p2 + 4 = 0 p =j 

Finally we have the Routh table: 

p5
 1 8 7 

p4
 4 8 4 

p3
 6 6  

p2
 4 4  

p1
 8  

p0
 4   

Conclude:The terms in the first column of the Routh table are positive, so 

the characteristic equation has no solution on the right side of the complex 

plane.The characteristic equation has 2 solutions located on the imaginary axis 

(p =j), the remaining number of solutions lying to the left of the complex plane 

is 5 – 2 = 3.Therefore, the given system is on the stable frontier. 

3.2.2. Hurwitz criteria 

a) State the Hurwitz criterion 

Suppose a system is described by the following nth-order characteristic 

equation: 

n n 1
0 1 n 1 na .p a .p ... a .p a 0−

−+ + + + =    (3.16) 

 Then the nth degree Hurwitz determinant has the form: 
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1 3 5

0 2 4

n 1 3

n

a a a 0

a a a 0

0 a a

0 0 0 a

 =     (3.17) 

Stated: The necessary and sufficient conditions for a linear automatic 

control system to be stable are the coefficient a0 positive and the Hurwitz 

determinants positive. 

b) How to establish Hurwitz's determinant 

The determinant n has n columns and n rows (n is the highest degree of 

the characteristic equation). 

The main diagonal of n starts from a1 consecutively to an. Terms in the 

same column of the Hurwitz determinant have increasing indices from bottom to 

top. Terms with indices higher than n and lower than zero are all zeroed. 

The sub-Hurwitz determinants (from n 1 1− → ) are formed by removing 

columns and rows from back to front and from bottom to top. 

Example 3.2.4 . Establish the Hurwitz determinants of the system with the 

following 4th-order characteristic equation: 

a0.p
4 + a1.p

3 +a2.p
2 + a3.p + a4 = 0 

 The answer:Establishing the nth-order Hurwitz determinant from the 

coefficients of the characteristic equation, we get: 

1 3

0 2 4

4

1 3

0 2 4

a a 0 0

a a a 0

0 a a 0

0 a a a

 =  

 From the determinant Δ4 , removing the columns and rows from back to 

front and from bottom to top, we get 

1 3

3 0 2 4

1 3

a a 0

a a a

0 a a

 = , 
1 3

2

0 2

a a

a a
 = , Δ1 = a1 

 Calculate the Hurwitz determinants Δi (i 1, n)= . We can consider the 

stability of the system. 

c) Consequences of the Hurwitz criterion 

The consequences of the Hurwitz criterion (Vunhegartxki criterion) are 

only considered for systems with degree n ≤ 3. 
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- For the 3rd level system 

The characteristic equation has the form: 

a0.p
3 + a1.p

2 +a2.p + a3 = 0     (3.18) 

Stated: 

The necessary and sufficient conditions for a stable third-order linear 

automatic control system are the coefficients ai (i 0, 3)=  positive and satisfies the 

inequality 1 2 0 3a .a a .a .  

We can prove this consequence as follows: 

The Hurwitz determinants are: 

1 1a 0 =   

1 3

2 1 2 0 3 1 2 0 3

0 2

a a
0  a .a a .a 0  a .a a .a

a a
 =  → −     

1 3

3 0 2 3 2

1 3

a a 0

a a 0 a . 0

0 a a

 = =   ; 

Since a3 > 0 and 2 > 0, 3 does not need to be calculated, the main 

condition is from Δ2 . 

Therefore, the stability condition for a 3rd order system is 1 2 0 3a .a a .a . 

- For systems of level less than or equal to 2 

The characteristic equation has the form: 

a0 .p
2 +a1 .p + a2 = 0      (3.19) 

Stated: 

The necessary and sufficient condition for a linear automatic control 

system of order less than or equal to 2 to be stable is that the coefficients a0 , a1, 

a2 are positive. 

We can use Routh or Hurwitz criteria to prove this consequence. 

Note in the Hurwitz criteria:The Hurwitz stability criterion is just another 

representation of the Routh criterion (comparing Δ2 in the Hurwitz criterion with 

the coefficient b0 in the Routh criterion, we see that they only differ by a 

coefficient a0 in the denominator).  

The Hurwitz criterion is often used with systems with low-order 

characteristic equations (n ≤ 4).Similar to the Routh criterion, the Hurwitz 

criterion can be used to find Kth . 

The Hurwitz criterion can be applied to consider stability for both closed 

and open systems with characteristic equations of any order. 
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3.3. FREQUENCY STABILITY STANDARDS 

3.3.1. Principle of application 

To prove frequency stability standards, we use the following principles: 

rotation angle principle (Argument principle) and envelope and non-

envelopment principle. 

a) Principle of rotation angle 

Suppose a system has the following characteristic equation: 

A(p) = a0 .p
n + a1 .p

n-1 + . . .+ an = 0     (3.20) 

Because equation (3.20) has solutions p1, p2 , . . ., pn so the left side of 

(3.20) can be written as: 

n

0 1 2 n 0 i

i 1

A(p) a .(p –  p ).(p –  p ) (p –  p ) a . (p p )
=

=  = −  

Substituting p = jω into the above expression and writing it concisely, we 

have: 

n

0 i

i 1

A(j ) a . ( j p )
=

 = −      (3.21) 

With ω being the independent variable in the range [-∞, +∞], then the 

factors (jω-pi ) are complex numbers. 

On the complex plane, each factor (jω - pi) is a vector with the origin point 

being pi , the tip point being jω (jω runs on the imaginary axis from [-∞, +∞]). 

According to (3.21) A(jω) is the product of n complex numbers (jω - pi), 

so on the complex plane it is a vector with a rotation angle equal to the sum of 

the component rotation angles: 

n

i

i 1

argA( j ) arg( j p )
=

  =  −     (3.22) 

 

 

 

 

 

 

Figure 3.6. Represent the solution vector 

Suppose equation (3.20) has m solutions with a positive real part (located 

on the right half of the imaginary axis) and (n - m) solutions with a negative real 

part (located on the left half of the imaginary axis), as depicted in the figure 3.6. 

+1 

+  -  

j= +∞ 

j= -∞ 

j -pk j -pi 

M N 

X 

pi 

0 

j 

pk   

+j 
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Convention: A negative angle is an angle with clockwise rotation; a 

positive angle is an angle with counterclockwise rotation. 

Consider the following cases of solution location on the complex plane: 

If the solution pi ( i = 1,…, n - m ) lies to the left of the imaginary axis: 

When ω varies from -∞÷+∞ each vector (jω - pi) rotates counterclockwise 

by an angle +π: 

iarg ( j p )
−

 − = 
      

(3.23) 

The total rotation angle of (n-m) solutions lying to the left of the 

imaginary axis is: 

n m

i

i 1

arg ( j p ) (n m)
−

− =

 − = −      (3.24) 

If the solution pk ( k = 1,…, m ) lies to the right of the imaginary axis: 

When ω varies from -∞ ÷ +∞ each vector (jω - pk ) rotates clockwise by 

angle -π: 

karg ( j p )
−

 − = 
    

(3.25) 

The total rotation angle of the m roots located to the right of the 

imaginary axis is: 

m

k

j 1

arg ( j p ) m
− =

 − = −      (3.26) 

 So from (3.24) and (3.26) we have the total rotation angle of A(jω) equal: 

n m m

i k

i 1 j 1

arg A( j ) arg ( j p ) arg ( j p ) (n 2m)
−

− − −= =

  =  − +  − = −    (3.27) 

 We can rewrite (3.27) as: 

n 2m
arg A( j ) .2

2−

−
  =       (2.28) 

From expression (3.28), we can state the rotation angle principle as 

follows: 

An n-order system with m roots on the right and (n - m) roots on the left 

of the complex plane with a frequency characteristic polynomial vector A(jω) 

will rotate an angle of (n - 2m)/2 closed loops according to counterclockwise 

direction when frequency ω varies from -∞ ÷ +∞. 
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b) Principle of inclusion and non-inclusion 

Consider point M located inside and outside the curve C as described in 

figure 3.7. 

In the case of figure 3.7a, if a point M does not lie in a closed curve C, we 

say the closed curve C does not include point M, and in the case of figure 3.7b, 

if a point M lies in a closed curve C, we say the closed curve C covers point M. 

 

 

 

 

 

 

Figure 3.7. A curve that covers and does not cover a point 

We can prove the following: 

In figure 3.7a, from point M outside the closed curve C, we draw two 

tangents at A1 and A2 . When the endpoint A1 of vector MA moves on the curve 

in the direction of the arrow to point A2 , the vector will rotate an angle -φ, and 

when going from A2 to A1 in the other direction of the arrow, the vector MA will 

rotate. an angle is +φ. With that convention, if tip A slides across the entire 

circle once, the total rotation angle will be: arg MA 0= − +  = . 

Thus, if the closed curve C does not include point M, then the rotation 

angle of vector MA when tip A slides on the curve once must be zero. 

In the case of figure 3.7b, with similar reasoning we have: If the tip A of 

the MA vector slides on the closed curve once, the total rotation angle of the 

MA vector will be 2π. 

Thus, if the closed curve covers point M, the rotation angle of vector MA 

when tip A slides on the closed curve once must be equal to 2π. From here, it 

can be deduced that if the curve is closed k times covering point M, then the 

rotation angle of vector MA will be 2kπ. 

3.3.2. Mikhailop standard 

a) Statement of standards 

The necessary and sufficient condition for a linear automatic control 

system to be stable is when ω varies from 0 to ∞ the Mikhailop curve A(jω) 

originates from the positive real axis and covers the origin continuously in the 

positive direction. (counterclockwise) an angle nπ/2. 

In which: n is the degree of the characteristic equation A(p) = 0. 

- 

A1 

A2 

M 

( C ) 

argMA =  

= -+= 

(a) 

A 

M 

2 

( C ) 

argMA 

 

(b) 

+ 
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In Figure 3.8, the example illustrates the Mikhailop curve A(jω) in the 

cases of a stable (Figure 3.8a) and unstable system (Figure 3.8b). 

 

 

 

 

 

 

 

Figure 3.8. Mikhailop curve 

b) Prove standards 

Suppose a system whose characteristic equation is: 

A(p) = a0 .p
n + a1 .p

n-1 + . . .+ an = 0     (3.29) 

Substituting p = jω into the polynomial A(p) we have: 

n n 1
0 1 n 1 nA(j ) a ( j ) a ( j ) ... a ( j ) a P( ) jQ( )−

− =  +  + +  + =  +   (3.30) 

Since P(ω) is an even function and Q(ω) is an odd function of ω, A(jω) 

and A(-jω) are two complex conjugate expressions. Inferred: 

0 0

1
argA( j ) argA( j ) argA( j )

2−  −

  =   =     (3.31) 

The system will be stable when all the solutions lie to the left of the 

complex plane (ie m = 0), from (3.28) we have: 

argA( j ) n.
−

  =        (3.32) 

So when ω varies from 0 ÷ +∞ we find: 

0

argA( j ) n.
2


  =       (3.33) 

 Expression (3.33) represents the content of the Mikhailop standard. 

c) Stability assessment method according to Mikhailop standard 

We can evaluate the stability of a system (closed or open) according to the 

Mikhailop standard as follows: 

Construct the graph A(j) by substituting p = jω into the characteristic 

polynomial and then separating the real and imaginary parts: 

A(j) = P() + jQ() 

 

jQ() jQ() 

P() P() 

n =1 

n =4 

n =6 n =1 

n =3 
n =4 

n =3 

n =2 

0 0 an 
an 

a) Stable b) Unstable 
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We see that the curve A(jω) originates from point an on the real axis and 

intersects the imaginary axis and real axis, respectively, in the positive direction 

(counterclockwise) with the gradual increase of . 

When the curve A(jω) cuts the real axis, the imaginary part is zero, Q(ω) = 0. 

When the curve cuts the imaginary axis, the real part is zero, P(ω) = 0, as illustrated 

in figure 3.9. 

Thus, the conditions for the system to be stable are: 

i

0 1 2 n 2 n 1

i

a 0

....

0

− −



         
 

    (3.34) 

Where:  

0 2 4, , ,...   is the solution of the equation Q() = 0 

 1 3 5, , ,...   is the solution of the equation P() = 0. 

 

 

 

 

 

 

Figure 3.9. Arrange the solutions of the real and imaginary parts 

Example 3.3.1. Consider the stability of the system with the following 

characteristic equation according to Mikhailop standard 

A(p) = p4 + 2p3 + 5p2 + 6p + 4 = 0 

The answer: 

Substituting p = j into the characteristic equation we have: 

4 2 3A(j ) ( 5 4) j(6 2 ) 0 =  −  + + −  =  

 Solving the equation with real and imaginary parts equal to zero, taking 

positive frequencies we get: 

4 2P( ) 5 4 0 =  −  + = has positive roots: 1 = 1 and 3 = 2 

3Q( ) 6 2 0 = −  = has positive roots: 0 = 0 and 2 = 3  

We see  

0 1 2 30 1 3 2 =   =   =   =  (Figure 3.10) and ai > 0: 

jQ() 

Q(0) = 0 

P() 

P(3) = 0 

Q(2) = 0 

 0 an 

P(1) = 0 
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Figure 3.10. Represent the solution on the frequency axis 

Satisfy the condition for the system to be stable, then the given system is 

stable. 

3.3.3. Nyquist criterion 

a) The open system is unstable 

- Standard statements 

Consider a system with unitary negative feedback, as in Figure 3.11. 

 

 

 

Figure 3.11. The system has unitary negative feedback 

The transfer function for an open system is: 

m
m j

j

j 0

n
n i

i

i 0

b .p
B(p)

W(p)
D(p)

a .p

−

=

−

=

= =




     (3.35) 

The closed system transfer function will be: 

k

W(p) B(p) B(p)
W (p)

1 W(p) D(p) B(p) A(p)
= = =

+ +
   (3.36) 

We always have b degree of B(p) smaller than or equal to D(p) (means 

mn ). Then: 

D(p) = 0is a typical program of an open system of order n. 

A(p) = D(p) + B(p) = 0 is a closed system characteristic equation that also 

has order n. 

From equations (1) and (2), we see that open and closed systems are 

interconnected: Both equations have n solutions, but the values of the solutions 

are different. Therefore, a system can be stable in an open circuit but unstable in 

a closed circuit, and vice versa. We can use the Nyquist criterion to consider the 

stability of a closed system through the phase-frequency amplitude 

characteristics of the open system. 

In the case of an unstable open system, we can state the Nyquist criterion 

as follows: The necessary and sufficient condition for a closed system to be 

stableis that when the open system is unstable and has m roots located on the 

W(p)  

Y(p) U(p) 

ω0 = 0 ω1 = 1 ω2 = 3  ω2 = 2 ω (rad/s) 
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right side of the plane complex is the frequency phase amplitude characteristic 

of an open system with  variation from 0 ÷ + bound point (-1, j0) m/2 turns 

in the positive direction (if m is an odd number then with  variation from -÷ 

characteristic frequency phase amplitude of the point-enclosed open system (-1, 

j0) m turns in the positive direction). 

 

 

 

 

Figure 3.12. Open-system Nyquist plot covering points (-1;j0) 

- Prove standards 

Consider the complementary vector F(j) with the origin at (-1, j0) and 

the tip running on the amplitude-phase-frequency characteristic chart of the open 

system W(j) as described in Figure 3.13. 

 

 

 

 

 

 

Figure 3.13. Nyquist plot with auxiliary vector F(j ω ) 

 According to the chart in Figure 3.12 we have:   

B(j ) D( j ) B( j ) A( j )
F( j ) 1 W(j ) 1

D(j ) D( j ) D( j )

  +  
 = +  = + = =

  
  (3. 3 7) 

 

In which: D(jω) and A(jω) are characteristic polynomials of open and 

closed systems, respectively. 

Suppose the open system characteristic equation D(p) = 0 has m solutions 

located in the right half of the complex plane. According to the rotation angle 

principle we have: 

0

arg D( j ) (n 2m).
2


  = −      (3.38) 

If the closed system wants to be stable, according to the rotation angle 

principle we also have: 

+1 

A 

0 

W(j) 

F(j) 

j 

M(-1, j0) = 

+1 

j 

(-1, j0) 

 =  

0 
W(j) 
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0

arg A( j ) n.
2


  =

      

(3.39) 

According to (3.37) the rotation angle of vector F(j) is calculated by: 

0 0 0

arg F( j ) arg A( j ) arg D( j )
  

  =   −      (3.40) 

 Substituting expressions (3.38) and (3.39) and (3.40) we get: 

0

m
arg F( j ) n. (n 2m). .2

2 2 2

 
  = − − =     (3.41) 

 The expression (3.41) shows that the vector F(jω) that covers the origin 

(0, j0)is m/2 round in the positive direction. Meanwhile, the graph W(j) is 

F(jω) shifted one unit to the right. Therefore, from the chart in Figure 3.13, we 

see that when the open system is unstable, if the closed system wants to be 

stable, the amplitude phase frequency characteristics of the open system W(j) 

include the point M(-1, j0)is m/2 loops in the positive direction when varies 

from 0 ÷ +. 

 b) The open system is stable and at the stable boundary 

- Standard statements 

The necessary and sufficient condition for a closed system to be stable, 

when the open system is stable or at the border of stability, is the phase-

frequency amplitude characteristic of the open system with ω varying from 0÷∞ 

without any point (-1, j0). 

- Prove standards 

Proving similarly to the case of an unstable open system, we consider the 

support vector F(jω) as shown in Figure 3.13. 

Assuming the open system is stable, then the open system characteristic 

equation has n solutions on the left of the virtual axis.According to the rotation 

angle principle, we have: 

0

arg D( j ) n.
2


  =

      

(3.42) 

If a closed system wants to be stable, the characteristic equation of the 

closed system also has n solutions on the left of the imaginary axis, so: 

0

arg A( j ) n.
2


  =

      

(3.43) 

According to (3.40), the rotation angle of vector F(j) can be calculated: 

0

arg F( j ) n. n. 0
2 2

 
  = − =

    

(3.44) 
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Expression (3.44) shows that the vector F(jω) does not include the origin 

(0, j0). Meanwhile, the graph W(j) is F(jω) shifted one unit to the right. 

Therefore, from the chart in Figure 3.13, we see that when the open 

system is stable or at the border of stability, if the closed system wants to be 

stable, the amplitude phase and frequency characteristics of the open system 

W(j) must not include the point M(-1, j0) when varying from 0 ÷+. 

- Use conversion points. 

In many cases, stable open systems or those at the stable boundary have 

complex phase amplitude and frequency characteristics W(j) and are often not 

closed curves (because  only considers 0+). Therefore, identifying their 

inclusion or non-inclusion with respect to the point (-1, j0) is very difficult. To 

make it easier, we switch to another way of representing, which is to use 

transition points: positive transition points C+ and negative transition points C-. 

The positive transition point C+ is the transition point from negative to 

positive and the negative transition point C- is the transition from positive to 

negative of the frequency phase amplitude characteristic W(jω) of the open 

system considered on the half-line from −∞ ÷ –1 belongs to the real axis. Detail: 

If C+ = C- then the closed system is stable. Characteristic W(jω) the open 

system does not include points (-1, j0); 

If C+ ≠ C- then the closed system is unstable. Characteristic W(jω) open 

system covers the point (-1, j0). 

Figure 3.14 describes the case where a closed system is stable if the open 

system is stable or at the border of stability. We see the feature W(j) of an 

open system does not include the point M(-1, j0) if the intersection of W(j) 

with the real axis in the range (-, -1) is absent (line1) or is a positive 

conversion intersection number C+ is equal to the number of negative transition 

intersections C- (line 2 with C+ = C- = 2). Thus, the condition for W(j) not to 

include the point M(-1, j0) is: C+ = C-. 

Figure 3.15 describes the case where a closed system is unstable if the 

open system is stable or at the border of stability:  

For line 1, we have C+ = 1, C- = 0; With line 2 we have C+ = 3, C- = 1. So 

the characteristic W(jω) of the point-bound open system M(-1, j0). Thus, the 

condition for W(j) to cover the point M(-1, j0) is: C+ ≠ C- . 

 

 

 

 

 

 

Figure 3.14. Characteristics W(jω) of an open system without inclusion of 

points M(-1, j0) 

j 

+1 0 

(2) 

(1) 

M(-1, j0) 
=0 C- 

C- 

C+ 

C+ 

 

Not including M 
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Figure 3.15. Characteristics W(jω) of an open system inclusion of points M(-1, j0) 

 3.4. CHAPTER 3 EXERCISES 

 3.4.1. Sample solution exercises 

Exercise 1. For a system with unit negative feedback with an open system 

transfer function equal to: 

4 3 2

3p 1
W(p)

3p(4p 2p 6p 2p 1)

+
=

+ + + +
 

Consider the stability of open systems according to Routh criteria, closed 

systems according to Mikhailop and Nyquist criteria. 

The answer: 

- Consider the stability of the open system 

Characteristic equation of open system: 

3p(4p 4 + 2p 3 + 6 p 2 + 2p + 1) = 0 

This equation has one solution equal to 0, and the other solutions are 

determined according to the equation 

4p4 + 2p3 + 6 p2 + 2p + 1 = 0     (*) 

Setting up a Routh table for equation (*) we get: 

p4 4 6 1 

p3 2 2  

p2 2 1  

p1 1   

p0 1   

All terms in the first column of the Routh table are positive, so the roots 

of this equation lie to the left of the imaginary axis. 

0 

j 

+1 

(1) 

(2) 

M 

=0 

C+ C+ 
C+ 

C- 
 

including M 
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Conclusion: The characteristic equation of an open system has one 

solution equal to 0 (located on the imaginary axis), the remaining solutions of 

this equation are all located to the left of the imaginary axis. Therefore, the open 

system at the boundary is stable. 

- Consider the stability of the closed system 

+ Consider stability according to Mikhailop standards 

The transfer function of a closed system: 

4 3 2

W(p) 3p 1
W(p)

1 W(p) 3p(4p 2p 6p 2p 1) 3p 1

+
= =

+ + + + + + +
 

Characteristic equation of a closed system: 

3p(4p4 + 2p3 + 6p2 + 2p + 1) +3p + 1 = 0 

Or   12p5 + 6p4 + 18p3 + 6p2 + 6p + 1 = 0 

The coefficients ai > 0, the condition needs to be guaranteed. 

Substituting p = jinto the characteristic equation of a closed system we 

get:64 - 62 + 1 + j(125 - 183 + 6) = 0 

Find the real solution: 

P(ω) = 64 - 62 + 1 = 0 

Solve the equation with only non-negative solutions: 1=0,46; 3=0,888 

Find the solution to the imaginary part: 

Q(ω) = 125 - 183 + 6= 0 

Solve the equation with only non-negative solutions: 0=0; 2=0,5; 4=1 

On the frequency axis, the real and imaginary part solutions are 

distributed alternately starting from the zero solution of the imaginary part 

(Figure 3.16). 

 

 

Figure 3.16. The distribution of solutions on the frequency axis 

The solution distribution satisfies the stability condition, so the closed 

system is stable. 

+ Consider stability according to the Nyquist standard 

According to the results from the above section, the open system is at the 

stable boundary. To investigate the stability of a closed system, we must build 

the frequency phase amplitude characteristic W(jω) of the open system. 

Substituting p = jinto the open system transfer function we have: 

ω1 = 0,46 ω0 = 0 ω1 = 0,5 ω2 = 0,888 ω2 = 1 ω (rad/s) 
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5 4 3 2 4 2 5 3

3j 1 3j 1
W(j )

12j 6 -18j 6 3j 6 6 + j(12 -18 3 )

+ +
 = =

 +   −  +   −    + 
 

Separating the real and imaginary parts, we get: 

5 3

3 2 4 2 2

36 48 3
P( )

(6 6 ) (12 -18 3)

 −  + 
 =

  −  +   +
 

4

3 2 4 2 2

6 3
Q( )

(6 6 ) (12 -18 3)

 −
 =

  −  +   +
 

Let Q() = 0 find the frequency value at which the characteristic W(jω) 

of the open system intersects the real axis: 

4

3 2 4 2 2

4 4
a

6 3
Q( ) 0

(6 6 ) (12 -18 3)

3
6 3 0 0,841

6

 −
 = =

  −  +   +

  − =  = =

 

Substitute = 0,841 into the real part P(): 

5 3

2 2
3 4 2

36(0,841) 48(0,841) 3.0,841
P(0,841)

0,841. 6.(0,841) 6.0,841 0,841. 12.(0,841) -18.(0,841) 3

P(0,841) 0,8383 1

− +
=

   − + +   

= −  −

 

So the phase-frequency amplitude characteristic of the open system 

(Figure 3.17) cuts the real axis in the range -1 < - 0.8383 < 0. 

 

 

 

 

 

 

 

 

Figure 3.17. Nyquist diagram of an open system 

We see that the open system frequency and phase amplitude 

characteristics do not include points (-1, j0). 

Therefore, an open system at the boundary is stable and has zero-point 

frequency phase amplitude characteristics (-1, j0), then according to the Nyquist 

criterion, the closed system is stable. 

* 

P() 

jQ() 

-0,8383 

-1 

 = 0 

→∞ 0 
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Exercise 2. Consider the stability of the system with the following 

characteristic equation: 

p5 + 4p4 + 4p3 + 4p2 + 5p + 3 = 0 

 The answer:Creating a Routh table from the coefficients of the 

characteristic equation, we have: 

p5 1 4 5 

p 4 1 4 3 

p 3 0 2  

Because in the Routh table the first term of a row is zero and the 

remaining terms are non-zero, we replace the zero term by some arbitrary very 

small positive number ε (ε → 0) and continue calculating. maths. 

Finally we have the Routh table: 

p5 1 4 5 

p4 1 4 3 

p3 ε 2  

p2 
4 2 −


 3  

p1 
23 8 4

4 2

 −  +

 −
  

p0 3   

 In the first column of the Routh table we see, because ε is positive very 

small → 0, so: 

The term in the 4th row in the first column is: (4ε - 2)/ε < 0; 

The term in row 5 in the first column is: 

23 8 4
0

4 2

 −  +


 −
(due to 

23 8 4 (3 8) 4 0 −  + =   − +  and (4ε - 2) < 0) 

 Thus, in the first column of the Routh table there are two terms with 

negative signs and two changes of sign. Therefore, the system is unstable and 

has two solutions with positive real parts. 

 3.4.2. Self-explanatory exercises 

1. Determine the stability of systems with the following characteristic 

equations: 

a) p4 + 10p3 + 33p2 + 46p + 30 = 0 
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b) p4 + p3 + 3p2 + 2p + 5 = 0 

c) p3 + 2p2 + 3p + 6 = 0 

d) p5 + p4 + 4p3 + 4p2 + 2p +10 = 0 

e) p4 + 5p3 + 2p2 + p + e-2p = 0 

Answer:   

a) The system is stable 

b) The system is unstable 

c) The system at the border is stable 

d) The system is unstable 

e) The system is unstable 

2. Consider the stability and determine the location of the solution on the 

complex plane of systems with characteristic equations as follows: 

a) p5 + 15p4 + 20p3 + 10p2+ 5p + 100 = 0 

b) p6 + 6p5 + 13p4 + 30p3 + 44p2 + 24p + 32 = 0 

c) p5 + 2p4 + 24p3 + 48p2- 25p - 50 = 0 

Answer:  

a) The system is unstable and the characteristic equation has 2 solutions 

located to the right of the imaginary axis; 

b) The system is at the stable boundary and the characteristic equation has 

4 solutions located on the imaginary axis; 

c) The system is unstable and the characteristic equation has a solution 

located to the right of the imaginary axis. 

3. For each characteristic equation of a control system with feedback, 

determine K so that the system is stable. Determine the value of K so that the 

system is at the boundary of stability and the oscillation frequency of the 

system. 

a) p4 + 20p3 + 15p2 + 2p + K = 0 

b) p3 + Kp2 + 5p + 10 = 0 

Answer:  

a) The system is stable 0 < K < 1,49. Oscillation frequency is 0,316 rad/s 

b) Stable system K > 2. Oscillation frequency 2,236 rad/s. 

4. The drive reader in the computer moves along the track with the 

diagram as shown in Figure 3.18. 

Determine the conditions for K and m of the control mechanism for the 

system to be stable. 
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Figure 3.18. Structure diagram of computer drive reader 

Answer: 
(60 K)(K 6)

m
36K

− +
  

5. Diagram of the vehicle rotation system as shown in Figure 3.19. 

Determine the relationship between K and a so that the system is stable. 

Answer : (K + 10)(126 - K) – 64K.a > 0 

 

 

 

 

Figure 3.19. Structure diagram of the vehicle rotation system 

6. The space shuttle can be used to repair satellites and the Hubble 

telescope. The structure diagram of that system is as shown in Figure 3.20, with 

Wc (p) = K = 8, 
1

W(p) = 
p(p 4)+

, H(p) = 1. 

 

 

 

 

 

Figure 3.20. Structure diagram of the space shuttle satellite repair system 

a) Determine the closed system transfer function and the noise transfer 

function. 

b) Is the closed system stable? Why? 

Answer: 

a)
2 2

Y(p) 8 Y(p) 1
;

U(p) F(p)p 4p 8 p 4p 8
= =

+ + + +
 

b) The closed system is stable, because the characteristic equation of the 

closed system has all positive coefficients. 

K

p(p 2)(p 5)+ +
  

U(p) Y(p) 

_ 

p a

p 1

+

+
 

Y(p) 
Wc(p) 

H(p)
 

W(p)  

U(p) 

F(p) 

E(p) 

 

1

p(p 1)(p 4)+ +
 

U(p) Y(p) 

_ 

K(p m)

p 1

+

+
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7. Give the structure diagram of the DC motor control system as shown in 

Figure 3.21. 

 

 

 

 

Figure 3.21. Structure diagram of DC motor control system 

With Kt = 0; Kt = 0,01; Kt = 0,1 determines K for the system to be stable 

according to the Nyquist criterion. 

8. Consider the stability of the submarine depth control system as shown 

in Figure 3.22. 

 

 

 

 

 

Figure 3.22. Structure diagram of the submarine depth control system 

9. For the remote missile control system considered in the nodding plane, 

the structure diagram is as shown in Figure 3.23. Consider the stability of the 

system according to the given parameters. 

 

 

 

 

Figure 3.23. Remote missile control system in the nodding plane 

 10. Use the Mikhailop criterion to find the limit value of K so that the 

closed system in Figure 3.24 is stable. 

 

 

 
 

 

Figure 3.24. System structure diagram 

 

Answer: 0,33 K 8,33−    

 

1
K
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+  
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(2p 3p 1)(p 1)+ + +
 

 
U(p) Y(p) 

_ 

Y(p) U(p) h 

 2

1

p

 

HLLK (p)

 

K '

1 pT



+

 

TL

1

1 pT+

 

p

2 2
p p p

K

1 2 T p T p+  +

 

V

V

T

 

α 

Actual depth K

p
  

U(p) Y(p) _ 

2

2
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+

+
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11. The system has a structural diagram as shown in Figure 3.25. 

 

 

 

Figure 3.25. System structure diagram 

Use the Nyquist criterion to determine the limit of K for the closed system 

to be stable. 

Answer: The open system is stable; The closed system will be stable when 

-1 < K < 2. 

 12. A space station needs to maintain orientation between the sun and the 

earth to maintain power and communication. The steering system is a closed 

system with unit negative feedback with the actuator and control transfer 

function being: 

2

K(p 20)
W(p) = 

p(p 24p 144)

+

+ +
 

Determine K so that the system oscillates with = 0,5. 

 Answer: K = 449,6238. 

 13. The autopilot system of a supersonic aircraft helps stabilize the 

aerodynamics of the aircraft, thus making the flight more stable. The shortened 

structure diagram of this system is shown in Figure 3.26. The aircraft's dynamics 

are approximated by a second-order system, where K is a parameter that 

changes according to flight conditions. Knowing that there is no disturbance 

F(s) = 0, determine the range of values of K for the system to be stable. 

 

 

 

 

 

 
 

Figure 3.26. Automatic navigation system of supersonic aircraft 

 Answer: 0 < K < 43.3. 

 14. The problem deals with the problem of controlling the flight path of a 

jet aircraft. A shortened diagram of a closed system is given in Figure 3.27, 

where the aircraft is approximated as a quaternary system. Determine the range 

of values of K for the closed system to be stable. 

3 2

K

(2p 2p 3p 1)(p 1)+ + + +
  

U(p) Y(p) 

_ 

1

p(p 6)+
 

1

p 8+
 

2

K(p 4)

p 2p 2

+

+ +
   

Wph =1 

W1(p) W2(p) W3(p) 

Y(p) U(p) 

F(p) 

+ 

_ 

Aircraft Motor Actuator 

Spindle 
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Figure 3.27. Jet aircraft flight control system 

 Answer: 0 < K < 9/14. 

 15. Survey of a remote-controlled unmanned aerial vehicle control system 

for reconnaissance missions. The block diagram of the control system is 

depicted in Figure 3.28. Consider the stability of this control system. 

 

 

 

 

 

 

Figure 3.28. Unmanned aerial vehicle control system 

16. The electromechanical system is used to stabilize and control the 

turret in the horizontal plane () as depicted in figure 3.29. 

 

 

 

 

 

 

 

 

Figure 3.29. Turret stabilization and control system 

In there:GYRO -Three-degree-of-freedom gyroscope used to measure the 

turret's deflection angles in the horizontal plane with a transfer function equal to 

W1(p) = K1 = 1. 

RT - Rotary transformer is used to convert the error angle into an 

alternating voltage with a transfer function equal to W2(p) = K2 = 40. 
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EAMP - Phase-sensitive electronic amplifier used to pre-amplify error 

signals with a transfer function equal to 3
3

3

K 250
W (p)

T p 1 0,007p 1
= =

+ +
. 

RA - Relay amplifier used to amplify error signals with transfer function 

equal to W 4 (p) = K 4 =1.4. 

EMA - Electrical machine amplifier used to amplify signals in terms of 

power with a transfer function equal to 5
5

5

K 3,2
W (p)

T p 1 0,02p 1
= =

+ +
. 

The DC electric actuator has a transfer function: 

6
6

6

K 1,5
W (p)

T p 1 0,13p 1
= =

+ +
 

SC - The speed changer has a transfer function equal to W7(p)=K7=0,005. 

 PLANT - The control object has a communication function equal to: 

8
8

8

K 5
W (p)

T p 1 0,25p 1
= =

+ +
 

 Determine the stability of the above system? 

 

Conclusion of chapter 3 

To assess the stability of a system, we employ specific standards tailored 

to the system's characteristics. For quaternary systems, the Hurwitz standard 

suffices, whereas for higher-order systems, such as quinary or beyond, criteria 

like Routh, Mikhailov, or Nyquist must be applied. The choice of stability 

criteria depends on the complexity and demands of the stability problem, 

ensuring optimal efficiency in addressing the system's stability concerns. 

 

Chapter 3 review questions 

Question 1: The general concept of stability. 

Question 2: State the algebraic stability criteria. 

Question 3: How to establish the Routh table and Hurwitz determinant. 

Question 4: What is the basis for considering stability according to 

frequency standards? 

Question 5: State the frequency stability standards. 

Question 6: Prove frequency stability standards. 
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Chapter 4 

QUALITY ASSESSMENT OF THE AUTOMATIC CONTROL SYSTEM 

Stability and quality constitute fundamental aspects to be examined in the 

study of automatic control systems. While stability is a prerequisite, the quality 

of a system may not necessarily meet the required standards, even if it is stable. 

If the system lacks stability, discussing quality becomes irrelevant. Assessing 

system quality involves determining whether the system operates effectively or 

inadequately. A quantitative evaluation is essential to thoroughly gauge the 

system's quality. 

4.1. EVALUATING THE QUALITY OF THE SYSTEM DURING 

THE ESTABLISHMENT PROCESS 

4.1.1. Quality criteria in the establishment process 

As we know, the control process includes: Transition process (TP) and 

establishment process (EP). Those two processes have their own quality 

requirements, so to evaluate them they must also have their own criteria. 

 

 

 

 

  

 

 

Figure 4.1. Graph of the system's transition process 

The establishment process is the process when the system has an input of 

u(t), and after the transition (state transition) ends, the system will establish a 

new stable state. In this new steady state, the system will have a certain error 

depending on the parameters and structure of the system. 

The quality indicator in the establishment process is the accuracy of the 

system, characterized by the error of the system in the steady state: 

xl
t

e lime(t)
→

=
     

(4.1) 

In which:  

u(t) is the desired setting value, y(t) is the actual setting value, 

e(t) = u(t) – y(t) is the established error over time. 

This error exists in the stable system after the end of the transient process. 

The steady state (equilibrium) of the system can be static or dynamic. 

TP 

h(t) 

t 

2 

0 Tm Tδ Tqđ 

hxl 

hmax 

hmax – hxl 

A  

G 

EP 
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Static equilibrium is a state of equilibrium when external influences and system 

parameters do not change over time. Dynamic equilibrium is a state of 

equilibrium when external influences change according to certain rules. At this 

point, we say the system works in forced equilibrium mode or tracking mode. 

Therefore, system errors are also divided into two types: static balance errors 

and dynamic balance errors. 

4.1.2. Calculate the steady-state error when the input signal is known 

Consider a system with unit negative feedback as shown in Figure 4.2. 

 

 

 

 

 

Figure 4.2. Structural diagram describing the automatic control system 

From the diagram we have the open system transfer function: 

m m 1
0 1

ν n ν n ν 1
0 1

Y(p) K b p b p ... 1
W(p) .

E(p) p a p a p ... 1

−

− − −

+ + +
= =

+ + +

   

(4.2) 

0ν

K
W(p) .W (p)

p
=      (4.3) 

m m 1
0 1

0 n ν n ν 1
0 1

b p b p ... 1
W (p)

a p a p ... 1

−

− − −

+ + +
=

+ + +    

(4.4) 

Where:  

is the static order of the system (number of ideal integration stages). 

Transfer function in terms of bias: 

E

ph

E(p) 1
W (p)

U(p) 1 W(p)W (p)
= =

+
 

ph

1
E(p) .U(p)

1 W(p)W (p)
=

+     
(4.5) 

According to the final limit property of the Laplace transform, expression 

(4.1) can be written as: 

xl
t p 0

e lime(t) limp.E(p)
→ →

= =
     

(4.6) 

Substituting the value of E(p) into (4.6), we get the steady state error 

equal to: 

Wph(p) 

K / pν  
16

p(p 0,8)+
 

Y(p) 

U(p) E(p) 
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xl
t p 0

ph

p
e lime(t) lim .U(p)

1 W(p)W (p)→ →
= =

+    
(4.7) 

xl
p 0

0 ph

p
e lim .U(p)

K
1 .W (p)W (p)

p

→



=

+

   (4.8) 

Every time the system establishes a new steady state, the system will have 

a certain error that depends on the system's structure and impact. With a system 

working normally, it means that the structure of the system has not changed. 

Therefore, we only need to consider the establishment error exl with different 

inputs. 

a) The input impact is a unit step function 

The input action has the form u(t) = C.1(t), with C = const. 

The Laplace image of the function C.1(t) is:  U(p) L C.1(t) C / p= =  

The system error is called static error or position error, denoted et. 

From there, according to (4.10), we have: 

t
p 0

h ph h ph
p 0

p 1 1
e lim .

1 W (p)W (p) p 1 limW (p)W (p)→

→

= =
+ +

 

Set p h ph
p 0

K lim W (p)W (p)
→

= - called the position coefficient. 

We get the error according to position by: t

p

1
e

1 K
=

+
. 

Consider the cases of static order ν (ideal number of integration steps): 

When = 0 (static system): 

p h ph 0 ph0
p 0 p 0

K
K limW (p)W (p) lim W (p)W (p) const

p→ →
= = =  

 Therefore: t

p

C
e

1 K
=

+
, this is called static error or position error. 

When1 (static system of order 1 or higher): 

p h ph 0 ph1
p 0 p 0

K
K limW (p)W (p) lim W (p)W (p)

p→ →
= = →  

Therefore: t

p

C C
e 0

1 K
= = =

+ 
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We see that for a static (non-static) system, the static error is 0, so 

increasing the system's static level is also a measure to increase the system's 

accuracy. Figure 4.3 illustrates the static error when the input signal is a unit 

step function with different numbers of ideal integration stages. 

 

 

 

 

 

 

(a) = 0      (b) = 1 

Figure 4.3. The error established with the input signal is a unit step 

b) The input is a slowly changing function 

The input action has the form u(t) = Vt, with V = const. 

The Laplace image of the function u(t) is: 

  2

V
U(p) L V.t

p
= = . 

In the case that the input quantity is a function that changes slowly at a 

uniform rate V= const, the system error is called rate error or velocity and is 

denoted by ev : 

v 2
p 0

h ph h ph
p 0

p V V
e lim .

1 W (p)W (p) limpW (p)W (p)p→

→

= =
+

 

Set v h ph
p 0

K limpW (p)W (p)
→

= - called the velocity coefficient. 

We get the error according to speed by: v

v

V
e

K
= . 

Consider the cases of static order: 

When = 0 (the system is static, that is, there is no ideal integration stage 

in the system): 

v h ph 0 ph0
p 0 p 0

K
K limpW (p)W (p) limp W (p)W (p) 0

p→ →
= = =  

 Therefore: v

v

V V
e

K 0
= = → , which means the error is very large and 

goes to infinity. 

h(t) 

t 

et ≠ 0 

0 

1 

h(t) 

t 

et = 0 

0 

1 
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When ν = 1 (first-order static system, that is, there is an ideal integration 

stage in the system): 

v h ph 0 ph1
p 0 p 0

K
K limpW (p)W (p) limp W (p)W (p) K const

p→ →
= = = =  

Therefore: v

v

V V
e const.

K K
= = =  

This error is proportional to the rate of change V of the input signal, so it 

is called speed error, and the transmission coefficient K of an open system is 

called the speed coefficient of the system. : 

D = K 

When2 (static system of level 2 or higher): 

v h ph 0 ph2
p 0 p 0

K
K limpW (p)W (p) limp W (p)W (p)

p→ →
= = →  

Therefore: v

v

V V
e 0

K
= = =


 

 With a static system the speed error is extremely large. For first-order 

static systems, the error with speed has a variable value. As for static systems of 

second order or higher, the speed error will be zero. Figure 4.4 illustrates the 

steady-state error when the input signal is a slowly changing function with 

different numbers of ideal integration stages, where e v is the error between the 

input signal u(t) and the output response h(t). ) of the system. 

 

 

 

 

 

 

 

(a) = 0   (b) = 1    (c) ≥ 2 

Figure 4.4. The steady-state error with the input signal is a slowly changing 

function 

c) The input impact is a slowly changing function with acceleration 

The input action has the form u(t) = at2 , with a = const. 

The Laplace image of the function u(t) is: 

h(t) 

0 

h(t) 

t 

ev → ∞ 

0 

u(t) 

h(t) 

t 

ev ≠ 0 

0 

h(t) 

h(t) 

t 

u(t) 

ev = 0 

h(t) 

u(t) 
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 2

3

2a
U(p) L a.t

p
= = . 

In the case that the input is a slowly changing function with acceleration 

a=const, the system error is called acceleration error and is denoted by ea : 

a 3 2
p 0

h ph h ph
p 0

p 2a 2a
e lim .

1 W (p)W (p) p limp W (p)W (p)→

→

= =
+

 

Set 2
a h ph

p 0
K limp W (p)W (p)

→
= - called acceleration coefficient. 

We get the error according to acceleration by: a

a

2a
e

K
= . 

Considering the cases of static order ν, we have: 

When = 0 or 1 (first-order static and nonstatic systems): ea = 

When = 2 (2nd order static system): a

a

2a
e const

K
= =  

When3 (static system of order 3 or higher), then: ea = 0. 

Figure 4.5 illustrates the steady-state error (acceleration error) when the 

input signal is a slowly changing function of acceleration with different numbers 

of ideal integration stages. 

 

 

 

 

 

 

 

(a) < 2     (b) = 2    (c) ≥ 3 

Figure 4.5. The steady-state error with the input signal is a slowly changing, 

accelerating function 

d) The input impact is the sum of the component impacts 

For a system whose input is the sum (or can be analyzed as a sum) of the 

component inputs, that is: 

u(t) = C + Vt + at2 

Then the error is determined by the sum of the component errors: 

h(t) 

0 

h(t) 

t 

ea → ∞ 

0 

u(t) 

h(t) 

t 

ea ≠ 0 

0 

h(t) 

h(t) 

t 

u(t) 

ea = 0 

h(t) 

u(t) 
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exl = et + ev + ea 

That is completely understandable because we use the superposition 

principle when examining linear systems. 

Thus, we see that depending on the number of ideal integration stages in 

the transfer function Wh(p)Wph(p), the coefficients Kp, Kv, Ka have different 

values, as shown. presented in table 4.1. 

Table 4.1. The relationship between the number of stages in the 

establishment process and the coefficients 

in  

W h (p)W ph (p) 

Position 

coefficient 

Kp 

Speed 

coefficient 

Kv 

Acceleration 

coefficient 

Ka 

0 Kp = const 0 0 

1 ∞ K v = const 0 

2 ∞ ∞ K a = const 

3 ∞ ∞ ∞ 

Comment: 

If the system's steady-state error for the input signal is a unit step function 

of zero, the transfer function Wh(p)Wph(p) must have at least one ideal 

integration stage. 

If the system's steady-state error for the input signal is a slowly changing 

function equal to 0, the transfer function Wh(p)Wph(p) must have at least two 

ideal integration stages. 

If the system's steady-state error for the input signal is a slowly changing 

function with zero acceleration, the transfer function Wh(p)Wph(p) must have at 

least three ideal integration stages. 

Example 4.1.1. Determine the steady-state error of the system with the 

structural diagram depicted in Figure 4.6 with input signals u = 15 and u = 3t. 

 

 

 

Figure 4.6. Unit negative feedback system 

 The answer: 

 Transfer function of open system: 

 
1

3(1 )
2p

+  
1

(3p 1)(4p 1)(p 1)+ + +
 

U(p) Y(p) 
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3(2p 1)
W(p)

2p(3p 1)(4p 1)(p 1)

+
=

+ + +
 

 It can be analyzed as follows: 

3 2

1,5 2p 1
W(p) .

p 12p 19p 8p 1

+
=

+ + +
 

 Transmission coefficient of the system: K = 1.5. 

 Number of integration stages in the system: ν = 1. 

 According to the analysis results in the above sections, we can conclude: 

 - When the input is u = 15, the system's static error is et = 0; 

- When the impact is u = 3t, the error according to the system's 

velocity ev = 3/1,5 = 2. 

4.1.3. Error coefficient method 

a) Error coefficient 

In practice, the impact of slow change is often encountered, but the 

components cannot be separated as considered above. To determine the steady-

state error in this case, we introduce the concept of error coefficient. 

How to determine the system's steady-state error can be carried out as 

follows: 

We have a related expression 

   E

E(p) B(p)
W (p)

U(p) A(p)
= =      (4.9) 

In which:  

E(p) is the error in the establishment process written in operator form, 

WE (p) is the error transfer function written as an operator, 

U(p) is the operation written as an operator. 

Here the polynomials numerator B(p) and denominator A(p) have the 

same degree. Finding the steady-state error means finding the error at time 

t→or p→0. That means p is very small, so we can implement the transfer 

function WE(p) into a Macloranh series: 

m m 1
2 i0 1 m

E 0 1 2 in n 1
0 1 n

b p b p ... b
W (p) C C p C p ... C p

a p a p ... a

−

−

+ + +
= = + + + +

+ + +
  

(4.10) 

In which: i = 0, 1,... n. 

Therefore, the error signal has the form: 
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2 i
E 0 1 2 iE(p) W (p).U(p) C U(p) C pU(p) C p U(p) ... C p U(p)= = + + + +  (4.11) 

Or switch back to the original function: 

2 i

0 1 2 i2 i

du(t) d u(t) d u(t)
e(t) C u(t) C C .... C

dt dt dt
= + + + +    (4.12) 

 Or     e(t) = et + ev + ea + … 

In there: 

   et = C0 u(t)  - Position error (static error); 

   v 1

du(t)
e C

dt
= - Dynamic error according to speed; 

   
2

a 2 2

d u(t)
e C

dt
= - Dynamic erroraccording to acceleration. 

Similarly, we have dynamic errors according to the higher derivative of 

the input signal. 

Expression (4.15) is the error established over time. 

Coefficients Ci(i = 0, 1,... n) is called the error coefficient. With the input 

impact known, we only need to find the error coefficients to determine the 

steady-state error. 

b) Methods for determining error coefficients 

Determine the error coefficient Ci by many methods such as direct 

calculation, polynomial division method, coefficient balancing method... In 

practice, the coefficient balancing method is often used. 

- Direct method of calculating Ci 

 Use the formula to directly calculate the coefficients Ci as follows: 

i
E

i ip 0

1 d W (p)
C lim

i! dp→
=

      

(4.13) 

In which: i = 0, 1,... n. 

- Coefficient balancing method 

From the Macloranh series approximation (4.10): 

m m 1
i0 1 m

E 0 1 in n 1
0 1 n

b p b p ... b
W (p) C C p ... C p

a p a p ... a

−

−

+ + +
= = + + +

+ + +
 

We cross-multiply both sides, group terms of the same order, then set up a 

system of equations to solve for the coefficients Ci . 
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 For example, with n = 3 we find the following error coefficients: 

3
0

3

1 2 0 2

3

2 1 1 0 1 2

3

3 0 0 0 1 1 2 2

3

d
C

a

1
C (d c a )

a

1
C (d c a c a )

a

1
C (d c a c a c a ).

a

=

= −

= − −

= − − −

    (4.14) 

Example 4.1.3. Calculate the steady-state error of a unit negative feedback 

system whose open system transfer function is 

3 2

100.(0,5p 1)
W(p)

p.(0,008p 0,1p 2,05p 1)

+
=

+ + +
 

 Know the impact on u(t) = 3 + 6t + 9t2 . 

The answer: 

Method 1: Direct calculation method Ci 

We have the transfer function in terms of error equal to:  

3 2

E 3 2

E(p) 1 p.(0,008p 0,1p 2,05p 1)
W (p)

U(p) 1 W(p) p.(0,008p 0,1p 2,05p 1) 100.(0,5p 1)

+ + +
= = =

+ + + + + +
 

 To summarize, we get: 

4 3 2

E 4 3 2

0,008p 0,1p 2,05p p
W (p)

0,008p 0,1p 2,05p 51p 100

+ + +
=

+ + + +
 

 Use formula (4.16) to calculate coefficients Ci : 

0 E
p 0

C limW (p) 0
→

= =  

E
1

p 0

dW (p)
C lim 0,01

dp→
= =  

2
E

2 2p 0

1 d W (p)
C lim 0,0154

2! dp→
= =   

So according to (4.15) the error is set by: 

2

2

du(t) d u(t)
e(t) 0.u(t) 0,01. 0,0154.

dt dt
= + +  

e(t) 0,01.(6 18t) 0,0154.18 0,18t 0,3372.= + + = +  
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Method 2: Coefficient balancing method 

We have an expression to approximate the transfer function WE(p) into a 

Macloranh series as 

4 3 2
2 3

E 0 1 2 34 3 2

0,008p 0,1p 2,05p p
W (p) C C p C p C p ...

0,008p 0,1p 2,05p 51p 100

+ + +
= = + + + +

+ + + +
 

Cross multiplying the two sides, grouping terms of the same order, we can 

create the following system of equations: 

0

0 1

0 1 2

0 100.C

1 51.C 100C

2,05 2,05.C 51.C 100.C

=

= +

 = + +

 

 Here we only need to find the coefficient C2 , because the third or higher 

derivative of the input impact is zero.  

Solving the above system of equations we get: 

0

1

2

C 0

C 0,01

C 0,0154

=


=
 =

 

Similar to method 1, using (4.15) we can calculate the setup error by: 

e(t) 0 0,01.(6 18t) 0,0154.18 0,18t 0,3372.= + + + = +  

4.1.4. Methods to improve the quality of automatic control systems 

during the setup process 

a) Increase the level of tranquility 

Since the established error depends on the input, the derivatives of the 

input and depend on the error coefficient: 

2 i

0 1 2 i2 i

du(t) d u(t) d u(t)
e(t) C u(t) C C .... C

dt dt dt
= + + + +    (4.15) 

In which u(t) is the control signal rule, so this rule cannot be removed or 

changed. So to reduce the steady-state error, just by reducing the error 

coefficients Ci . 

From (4.18), we see that if we want to eliminate the error up to the n-1 

derivative level, we must raise the static order of the system to n. 

When the static order ν = 0, then C0 ≠ 0, there exists a set error value from 

the position error onwards: 

0 1

du(t)
e(t) C u(t) C ...

dt
= + +  
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When ν = 1, then C0 = 0, C1 ≠ 0, so there is only one set error value 

calculated from the error according to velocity (first derivative) onwards: 

2

1 2 2

du(t) d u(t)
e(t) C C ....

dt dt
= + +  

When ν = 2, then C0 = C1 = 0, C2 ≠ 0, so there is only one set error value 

calculated from the error according to acceleration (second derivative) onwards: 

2 3

2 32 3

d u(t) d u(t)
e(t) C C ...

dt dt
= + +  

Thus, we see that raising the static level of the system can reduce the 

value of the stability error, but raising the static level can also cause instability 

of the system. 

b) Increase the amplification factor 

According to the analysis in the above sections, we see that the error 

coefficients are inversely proportional to the amplification (transformation) 

coefficient K of the system. Therefore, increasing the amplification factor will 

reduce the error in the system (derived from the formula exl ). But this method 

increases the system's cutoff frequency, leading to a decrease in system stability, 

and can even make the system unstable. It is up to each system to increase the 

amplification factor to a reasonable value (critical value) Kth . 

c) Additional additional steps are required 

When the structure changes, the dynamic properties of the system change, 

changing the quality of the system. To change the structure, we can add a 

system of supporting stages. Choosing the structure and parameters of the 

supporting stage turns an initial system that does not meet quality requirements 

into a system that ensures the quality requirements set for it. 

There are three ways to add additional stages to the system to improve the 

quality of the control system during the setup process: series connection, parallel 

connection and mixed connection. 

- Connected in series 

This way of connecting is to put the auxiliary link in series with the links 

in the main circuit of the system. Or in other words, adding a series connection 

to the open system transfer function as illustrated in Figure 4.7. 

We can use the differential or integral step as a complementary step. 

 

 

 

Figure 4.7. System with auxiliary connection connected in series 

 W(p)  ntW (p)  
U(p) Y(p) 
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The advantage of this method is that the system is simple. But it does not 

directly improve the characteristics of individual stages, which negatively 

affects the dynamic quality of the system, and is also sensitive to noise. 

- Connected in parallel (secondary feedback wire) 

This way of connecting is to introduce a supporting stage into the system 

by connecting in an auxiliary feedback style that covers one or a group of 

elements in the main circuit. 

 

 

 

 

Figure 4.8. System with auxiliary connections connected in parallel 

Often people make the supporting stage cover the structure, which has a 

negative effect on the dynamic quality of the system as illustrated in Figure 4.8. 

The advantage of this method is that when selecting auxiliary structures, 

there is no need to satisfy strict quality conditions, because some included 

structures have little effect on the dynamic properties of the system. 

Furthermore, this mechanism is less sensitive to noise, thus reducing random 

errors. 

However, this method has disadvantages: The auxiliary stage is complex 

and cumbersome, and the auxiliary stage often requires a large amplification 

coefficient and complex correction calculations. 

- Mixed hooks 

Combining the above two methods (Figure 4.9), the disadvantages of the 

two methods can be overcome to improve quality. 

 

 

 

 

Figure 4.9. System with mixed auxiliary stages 

Each method of improving system quality in the establishment process 

has its own advantages and disadvantages, so it has a certain scope of 

application. Depending on the actual problem, the ability of the synthesizer and 

the calculation tool, choose the most appropriate method to achieve high 

efficiency. 

 

ntW (p)   

U(p) 
1W (p)   2W (p)  

ssW (p)  

Y(p) 

 

U(p) 
1W (p)   2W (p)  

ssW (p)  

Y(p) 
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4.2. EVALUATING THE QUALITY OF THE SYSTEM DURING 

THE TRANSITION PROCESS 

4.2.1. Quality criteria in the transition process    

An automatic control system is said to be stable when the system's output 

signal gradually decreases over time: 

qđ
t
lim y (t) 0
→

=
  

(4.16) 

Or the output signal of the system when the input signal u(t) is a unit step 

function 1(t) will approach a constant stable value. The curve in Figure 4.1 can 

fluctuate around the value hxl. Above and below the value of hxl, we take 5% of 

hxland draw it into a strip. If the curve h(t) falls within the band ± 5%hxl, suppose 

it cuts this band at point G. At point G, we can determine the system's transient 

time as Tqd. The indicators to evaluate the quality of the transition process are 

summarized as follows: 

- Transition time Tqd 

Determined by the length of the transition process. In theory, the 

transition process lasts indefinitely but in reality it is considered to end when the 

deviation of the controlled quantity from its new set value does not exceed the 

allowable limit of . 

Usually choose equal to (25)% compared to hxl. People characterize the 

rapidity of the system by its transient time. But there are also documents that 

characterize it by the time Tm when the transition function first reaches a new set 

value or by the time with an adjustment Tδ when the transition function reaches 

its maximum value hmax . 

- Adjustable overshoot δ 

Over-adjustment is the maximum deviation of the amount to be adjusted 

compared to the new set value. 

The relative overcorrection is calculated by 

max xl

xl

h h
.100%

h

−
 =      (4.2) 

Overshoot occurs because the system approaches a new steady state at a 

certain speed. This speed is equal to the angle of inclination of the tangent line at 

point A: 

t T

dh(t)
tg

dt =

 =
      

(4.3) 

The greater this speed is, the further the system, due to inertia, moves 

away from the new set position. Thus, if you want to reduce over-regulation, 

you need to reduce the speed of the system, that is, reduce the rapidity of action. 
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But people always want to reduce the transient time, which means processing 

the control signal at a high speed leads to a large overshoot. Therefore, the 

overcorrection must be selected at an appropriate value. In practice, choosing an 

overcorrection level within the range of (2030)% is often optimal. 

 Adjustment overshoot and transition time are two basic indicators of the 

transition process. People always want both of those criteria to be the smallest, 

because the smaller Tqd , the faster the system acts and the smaller δ, the easier 

the system is to realize. That wish cannot be realized, because they have 

opposing properties, that is, if the adjustment period is small, the transition time 

is large and vice versa. To ensure the quality of the system (in some optimal 

sense), two appropriate criteria must be selected, and they should not be 

separated during the survey process. 

In addition to the two basic criteria above, there are also: 

Response time Tm : Determined by the time when the transient function 

first reaches the set value hxl when there is an overshoot. 

Overshoot time Tδ : Determined by the time the transient function reaches 

its maximum value. 

Number of oscillations N: Determined by the number of times the 

controlled quantity oscillates around the new set value during the transition time 

N = Tqd /T0 (with T0 = 2πω0 being the oscillation period natural movement). In 

fact, people often choose N = 12. 

When evaluating the quality of the system during the transition process, 

the criteria δ and N characterize the accuracy of the transition process; while Tqd, 

Tδ , Tm characterize the fast-acting nature of the system. 

4.2.2. Transient response analysis 

a) Transient response of a first-order inertial system 

 - Overview of first-order inertial systems 

According to expression (2.37), we have the function that conveys the 

first-order inertial system as: 

K
W(p)

Tp 1
=

+
     (4.19) 

A first-order inertial system has one real pole: 1

1
p

T
= − . 

The transient response of a first-order inertial system is equal to: 

 1 1 t/T1 K
h(t) L U(p).W(p) L . K(1 e )

p Tp 1

− − − 
= = = − 

+     
(4.20) 
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Figure 4.10. Pole-zero diagram of first-order inertial phase 

  

 

 

 

 

 

Figure 4.11. Transient response offirst-order inertial phase 

 - Comments on first-order inertial systems 

The first-order inertial system has only one real pole p1 = -1/T (Figure 

4.10), the transient response has no overshoot as described in Figure 4.11. 

The time constant T is determined by the time the response of the first-

order inertial link reaches 63% of the established value. 

The transient time of a first-order inertial system is: qd

1
t Tln

 
=  

 
 

With = 0.02 (2% standard) or = 0,05 (5% standard). 

 

 

 

 

 

 

Figure 4.12. Relationship between pole position and transient response 

The farther the real pole (-1/T) is from the imaginary axis, the smaller the 

time constant T, the faster the system responds, and the shorter the transient 

time, as illustrated in Figure 4.12. 
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b) Transient response of a second-order oscillation system 

- Overview of second-order oscillation systems 

According to expression (2.46), we have the transfer function of the 

second-order oscillation system as: 

2
n

2 2 2 2
n n

K K
W(p)

T p 2 Tp 1 p 2 p


= =

+  + +  +    

(4.21) 

 In there: 

n

1

T
 = - Natural oscillation frequency, 

0 1  - Damping coefficient. 

The second-order oscillator system has a pair of complex poles: 

2
1,2 n np j 1= −   − 

      
(4.22) 

The transient response of a second-order oscillation system is equal to: 

 

n

2
1 1 n

2 2
n n

t
2

n
2

1 K
h(t) L U(p)W(p) L .

p p 2 p

e
K 1 sin ( 1 )t

1

− −

−

 
= = = 

+  +  

   = −  −  +    −   

  (4.23) 

With cos = . 

 The pole-zero point diagram and transient response of the second-order 

oscillation system are depicted in Figures 4.13 and 4.14. 

 

 

 

 

 

 

Figure 4.13. Pole-zero diagram of Figure 4.14. Transient response of 

quadratic oscillation stage  quadratic oscillation stage 

- Comments on second-order oscillation systems 

The second-order oscillation system has a complex pair of poles, the 

transient response has the form of oscillation with decreasing amplitude, in 

which: 

 

Im 

× 

0 

h(t) 

K -ξωn 

t 

0 

θ 

jωn
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If ξ = 0, the response of the system is undamped oscillation with 

frequency ωn , then ωn is called the natural oscillation frequency. 

If 0 < ξ < 1, the response of the system is to oscillate with decreasing 

amplitude, ξ is called the damping coefficient (or attenuation coefficient), the 

larger ξ is (the closer the pole is to the real axis), the more attenuated the 

oscillation is. decrease faster. 

Transient response of a second-order oscillator system with 

overcorrection: 

21
e .100%

 
 −
 −  =       (4.24) 

According (4.24), we see that the larger ξ (the closer the pair of poles is to 

the real axis), the smaller it is, the smaller ξ (the closer the pair of complex 

poles is to the imaginary axis), the larger it is. The relationship between 

damping coefficient and overshoot is depicted in Figure 4.15. 

 

 

 

 

 

 

Figure 4.15. Relationship between damping coefficient and overcorrection 

The transient time of a second-order oscillation system is calculated in 

two cases: 

According to the 5% standard:  

qđ

n

3
t =


    (4.25) 

According to the 2% standard:  

qđ

n

4
t =


    (4.26) 

- Relationship between pole position and transient response of second-

order oscillation system 

Second-order oscillation systems with poles located on the same ray 

originating from the origin have equal damping coefficients, and therefore have 

equal overcorrections. Any system whose pole is farther from the origin has a 

larger natural oscillation frequency, so the transient time is shorter. This 

relationship is depicted in Figure 4.16.  
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Figure 4.16. The pole lies on the same ray originating from the origin 

Second-order oscillating systems with poles located at an equal distance 

from the origin have the same natural oscillation frequency; systems with poles 

located closer to the virtual axis have a smaller damping coefficient, so the 

transient adjustlarger, the transition time is longer.This relationship is depicted 

in Figure 4.17. 

 

 

 

 

 

 

Figure 4.17. The pole is located at an equal distance from the origin 

Second-order oscillation systems with poles located at an equal distance 

from the imaginary axis have equal ξωn , so the transient times are equal. Any 

system whose pole is farther from the real axis has a smaller damping 

coefficient, so the overcorrection is higher. This relationship is depicted in 

Figure 4.18. 

 

 

 

 

 

 

Figure 4.18. The pole is located at an equal distance from the virtual axis 

4.2.2. Integral standards 

Evaluating system quality according to integral criteria means using a 

definite integral of a certain function as a basis to evaluate the quality. For 

automatic control systems, the error function e(t) is usually taken. 
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Figure 4.19. Unit negative feedback system 

Suppose a system is shown in Figure 4.19, with the input being a unit step 

function: 

e(t) = u(t) – y(t) = 1(t) – h(t)     (4.27) 

a) Simple integration 

As we know, the transition function has two types: non-oscillating 

characteristics and oscillatory characteristics, corresponding to that the error 

function also has two types as depicted in Figure 4.20. 

 

 

 

 

 

 

 

 

 

Figure 4.20. Represents transient characteristics and error functions 

If the transient characteristic h(t) is a monotonic process as shown in 

Figure 4.20a, then the corresponding error function e(t) is also a monotonic 

function as shown in Figure 4.20b. 

If the transient characteristic h(t) is an oscillating process as shown in 

Figure 4.20c, then the corresponding error function e(t) has the form as shown in 

Figure 4.20d. 

We see that the area created by the line e(t) and the horizontal axis 

(striped part) is proportional to the correction degree δ and the transition time T 

qd , that area is calculated by the following integration:  

1

0

I e(t)dt



= 
      

(4.28) 

If the quality of the system is good, I 1 must reach the smallest possible 

value. 

W(p)  

y(t) u(t) e(t) 

(a) 
0 t 

h(t) 

1(t) 

0 

e(t) 

t 
0 t 

e(t) 

(b) (d) 

1(t) 

h(t) 

t 0 

(c) 
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So when using integration to evaluate the quality of the system, it is called 

quality integration. 

How to calculate integral I1 : 

According to generalized integration we have 

t t
pt

1
t p 0

0 0 0

I e(t)dt lim e(t)dt lim e(t).e dt


−

→ →
= = =    

 According to the forward Laplace transform 

p.t

0

E(p) e(t).e dt


−=   

So we get it 

1
p 0

I limE(p)
→

=     (4.29) 

So instead of calculating I1 according to (4.28), we just calculate I1 

according to the simpler expression (4.29). 

For oscillatory transients, the area according to (4.28) can be very small 

but the correction degree and transient time can be large, because the two areas, 

negative and positive, offset each other, so use (4.28) to evaluate the oscillatory 

transient process is not appropriate. Therefore, the integral I1 can only be used to 

evaluate the non-oscillating transient process . 

To overcome this problem, we propose the following integral criteria: 

2

0

I e(t) dt



= 
     

(4.30) 

With this formula, the sign of e(t) no longer affects the value of the 

integral. Although I2 can evaluate the quality of the oscillating or non-oscillating 

transient process , in reality it is rarely used because to calculate according to 

formula (4.30), the variation path of e(4.30) must be known in advance. t). 

b) Integral squared error 

We see that calculating I2 is difficult, because the function under the 

integral sign is an absolute value, so people give the square integral of the error 

function: 

2
3

0

I e (t)dt



= 
     

(4.31) 

The way to calculate the estimate of the squared error integral I3 is as 

follows: 
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Substitute p = jω into the forward Laplace transform 

 
j t

0

E( j ) e(t).e dt


−  = 

    

(4.32) 

and inverse transformation 

 
j t1

e(t) E( j ).e d
2




−

=  
 

    

(4.33) 

 Substituting (4.31) and (4.32) into (4.30) and transforming, we get 

2 j t
3

0 0 0

1
I e (t)dt e(t).e(t)dt e(t) E( j ).e d .dt

2

   


−

 
= = =   = 

  
     

j t

0

1
E( j ) e(t).e dt .d

2

 


−

 
=   

   
   

Let 
* j t

0

E (j ) e(t).e dt


 =  be the complex conjugate expression of E(j ), so 

*
3

1
I E( j ).E ( j )d

2



−

=   
 

 

So we can 

2

3

1
I E( j ) d

2



−

=  
 

    

(4.34) 

Where the expression for the bias function is equal to 

n 1 n 2
0 1 m

n n 1
0 1 n

b ( j ) b ( j ) ... b B( j )
E( j )

A( j )a ( j ) a ( j ) ... a

− −

−

 +  + + 
 = =

 +  + +
 

Expression (4.34) is the Parseval integral for calculating I3 and the optimal 

parameters of the system according to I3. 

We often calculate I3 using available formulas (replace jω = p): 

m m 1
0 1 m 1 m

n n 1
0 1 n 1 n

b p b p ... b p b
E(p)

a p a p ... a p a

−
−

−
−

+ + + +
=

+ + + +
 

The degree in the numerator is smaller than the degree in the denominator 

(m < n). 

If m = n – 1, we can calculate I3 with the following formula: 



130 
 

0

0 1

b
E(p)

a p a
=

+   

2
0

3

0 1

b
I

2a a
 =

    

(4.35) 

0 1
2

0 1 2

b p b
E(p)

a p a p a

+
=

+ +  

2 2
1 0 0 2

3

0 1 2

b a b a
I

2a a a

+
 =

   

(4.36) 

2
0 1 2

3 2
0 1 2 3

b p b p b
E(p)

a p a p a p a

+ +

+ + +

2 2 2
2 0 1 1 0 1 0 3 0 2 3

3

0 3 1 2 0 3

b a a (b 2b b )a a b a a
I

2a a (a a a a )

+ − +
 =

−  

(4.37) 

c) Advanced squared error integral 

In many cases, the I3 standard does not accurately represent the quality of 

the transition process. For example, in Figure 4.21, the system corresponding to 

line e2(t) has better quality than the system corresponding to line e1(t), because 

e2(t) is a characteristic line that does not fluctuate. But when calculating the 

integral I3, the evaluation of the integral corresponding to the line e1(t) is smaller 

than the evaluation of the integral corresponding to the line e2(t). 

 

 

 

 

Figure 4.21. Deviation function of oscillatory and non-oscillating transients 

Or in other words, if calculated according to (4.31), it does not accurately 

represent the quality of the transition process (the fluctuating nature of the 

deviation). Therefore, the component de(t)/dt is included to reflect the rate of 

change and fluctuation of e(t) as follows: 

2 2 2
4

0

de
I [e (t) ( ) ]dt

dt



= + 
     

(4.38) 

τ2 is a fixed value, usually τ2 is chosen in the range: 

qd qd2
T T

6 3
    

Integrating I4 gives us a complete assessment of the quality of the 

transition process. When I4 reaches the smallest value, it means that a small I3 is 

achieved but the rate of change of the error is not high. For each individual 

system, an appropriate value of τ2 must be chosen. You can choose a small τ2 

with a transition process that allows large fluctuations. 

How to estimate integral I4 : 

We have 

e1(t) 

e(t) 

t 

e2(t) 

0 
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2 2 2 2 *
4 3 3

0 0

de
I e (t)dt ( ) dt I .I

dt

 

= +  = +  
   

(4.39) 

 In there   

* 2
3

0

de
I ( ) dt

dt



=        (4.40) 

To calculate, 
*
3I we set 

de(t)
m(t)

dt
= , perform Laplace transform 

M(p) pE(p) e(0)= −        

According to the initial value theorem 
t 0 p

e(0) lime(t) lim pE(p)
→ →

= =

 

 

Therefore 

p
M(p) pE(p) lim pE(p)

→
= −

     

(4.41) 

So in expression (4.39) we have to calculate I3 and 
*
3I , which 

*
3I can be 

calculated from the expression M(p) using the available formula like calculating I3. 

Example 4.2.1. Given a system with unit negative feedback, know the 

open system transfer function is 
K

W(p)
p(Tp 1)

=
+

. In which K,T > 0 and τ=0,5. 

Determine quality integrals. 

The answer: 

To evaluate the quality of the system's transition process , the impact must 

be a function of 1(t) . 

The error function: 

2

1 Tp 1
E(p) .U(p)

1 W(p) Tp p K

+
= =

+ + +
 

According to the quality integral expression (4.29), we can calculate: 

1 2
p 0 p 0

Tp 1 1
I limE(p) lim

KTp p K→ →

+
= = =

+ +
 

 The squared error integral I 3 is calculated using the formula: 

2 2
1 0 0 2

3

0 1 2

b a b a 1 KT
I

2a a a 2K

+ +
= =  

 To calculate the advanced squared difference integral I4, we calculate 

according to (4.41). 
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2
p

K
M(p) pE(p) lim pE(p)

Tp p K→

−
= − =

+ +
 

 Then I3
* equals  

2 2
* 1 0 0 2
3

0 1 2

b a b a K
I

2a a a 2

+
= =  

Therefore, we can calculate the quality integral I4 as: 

2 * 2
4 3 3

1 1
I I .I (T 0,5 ).

2 K
= +  = + +  

4.3. CHAPTER 4 EXERCISES 

4.3.1. Sample solution exercises 

Exercise 1. Calculate the steady-state error of a system with a structural 

diagram as shown in Figure 4.22. 

 

 

 

 

 

 

Figure 4.22. The automatic control system has noise 

In there: 
1 khi t 0

u(t)
0 khi t 0


= 


; and noise f(t) = A(t). 

The answer: 

We know:  Y(p) = W1 (p)W2 (p)E(p) + W2 (p)F(p) 

On the other hand:  E(p) = U(p) – K1 Y(p) 

Y(p) = W1(p)W2(p).[U(p) – K1Y(p) ]+ W2(p)F(p) 

 Transforming we get: 

U F

1 2 2

1 2 1 1 2 1

Y (p) Y (p)

W (p)W (p) W (p)
Y(p) U(p) F(p)

1+W (p)W (p)K 1+W (p)W (p)K
= +  

The system has two inputs, so the error function is the sum of the 

component errors:  

E(p) = EU(p) + EF(p) 

 

2

p 1

p p 1

+

+ +
 

2K

p
 

K1 

  
U(p) Y(p) 

F(p) 

_ 

+ 

W1(p) W2(p) 

E(p) 
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In there: 

1 2
U U

1 2 1

W (p)W (p)
E (p) U(p) Y (p) 1 U(p)

1+W (p)W (p)K

 
= − = − 

 
 

2
U 2

1 2

K (p 1)
E (p) 1 U(p)

p(p p 1) K K (p 1)

 +
 = − 

+ + + +   

2
F F

1 2 1

W (p)
E (p) 0 Y (p) F(p)

1+W (p)W (p)K
= − = −  

2
F 2

1 2

K (p 1)
E (p) F(p)

p(p p 1) K K (p 1)

 +
 = − 

+ + + + 
 

According to the beginning of the article: U(p) = 1/p and F(p) = A. 

Then: 

xl U F
p 0 p 0

2 2 1
U 2

p 0 p 0
1 2 11 2

2
F 2

p 0 p 0
1 2

e limpE (p) limpE (p)

pK (p 1) 1 K K 1
limpE (p) lim p 1

p K K Kp(p p 1) K K (p 1)

pK (p 1)
limpE (p) lim A 0

p(p p 1) K K (p 1)

→ →

→ →

→ →

= +

 + −
= − = − = 

+ + + + 

 − +
= = 

+ + + + 

 

 So: 1
xl

1

K 1
e

K

−
=  

If K1 = 1 is chosen, then the system's steady-state error exl = 0. 

Exercise 2. Suppose the transfer function for a closed system has the form:  

k 2

16
W (p)

p (0,8 16K)p 16
=

+ + +
 

a) Determine the value of K so that the damping coefficient = 0.5. 

b) Find the overshoot , time t and transient time when the input signal is 

a unit step function of 1(t) calculated according to the 2% and 5% standards. 

 The answer: 

 a) Determine the value of K so that the damping coefficient = 0.5  

   

2
n

k 2 2 2
n n

16
W (p)

p p(0,8 16K) 16 p 2 p


= =

+ + + +  +
 

2
n n16 4. = → =  
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On the other hand, knowing = 0.5 so: 

0.8 + 16K = 2 n
n2 0,8

K 0,2
2

 −
 = = . 

b) Find the overshoot , time t and transient time when the input signal is 

a function of 1(t) calculated according to the 2% and 5% standards 

- Overshoot adjustment:   

2 2

0,5 3,14

1 1 0,5
% e .100 e 16,32%

       − −
   − −    = = =  

- Adjustable time t : 

2 2
n

3,14
t 1,04 (s)

1 4 1 0,5



= = =
 −  −

 

- Transit time: 

+ According to 2% standard: s

n

4 4
t 2(s)

0,5 4
= = =
 

 

+ According to 5% standard: s

n

3 3
t 1,5(s).

0,5 4
= = =
 

 

4.3.2. Self-explanatory exercises 

1. Determine the position, velocity and acceleration coefficients of the 

step function, slope function, and parabolic function of the unit negative 

feedback control system with the following open system transfer function: 

a)
K

W(p)
p(1 0,1p)(1 0,5p)

=
+ +

 

b)
1000

W(p)
p(10 p)(100 p)

=
+ +

 

Answer:  

a) Kp = ∞; Kv = K; Ka = 0. 

b) Kp = ∞; Kv = 1; Ka = 0. 

2. For the control system described in Figure 4.23. 

 

 

 

 

Figure 4.23. Automatic control system 

 

16

p(p 0,8)+
 U(p) Y(p) 

_ 

Kp + 1 
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a) Determine the value of K so that the damping coefficient = 0.5. 

b) Find the overshoot and transient time when the input signal is a unit 

step function 1(t) calculated according to two standards 2% and 5%. 

Answer: 

 a) K = 0.2. 

b) =16.318%; Tqd =2s (standard 2%); Tqd =1,5s (standard 5%) 

 3. Given a system with unit negative feedback, know the open system 

transfer function is 
2

2K 1
W(p)

p(p 2Tp 1)

+
=

+ +
. In which K,T > 0 and τ = 0.5. 

 Please determine the quality integrals. 

4. A ground radar used to detect airborne targets. Structure diagram in the 

azimuthal plane of the radar is shown in Figure 4.24. 

 

 

 

 

Figure 4.24. Structure diagram in the azimuthal plane of the radar 

Determine the steady-state error of the system when the input signal is: 

a) u(t) = 10t.    b) u(t) = 10t + 6t 2 . 

5. For the turret control system on the tank, have the diagram shown in 

Figure 4.25. 

 

 

 

Figure 4.25. Turret control system on tanks 

Determine the steady-state error of the system when the input signal is: 

a) u(t) = 100t. 

b) u(t) = 12t 2 . 

c) u(t) = 20 + 100t + 12t 2 . 

Answer:
3 2

E 3 2

0,1p p
W (p)

0,1p p 24

+
=

+ +
 

a) e(t) = 0. 

b) ae(t) 0,041.24 0,984 e= = =  

c) ae(t) 0 0 0,041.24 0 0,984 e= + + + = = . 
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 6. The US military's Boeing V-22 is both a jet and a helicopter. The 

engine and propeller have the ability to rotate 90 degrees vertically and can 

change flight mode from helicopterto jet within 16 seconds. The simple 

structure diagram of the aircraft is shown in Figure 4.26. 

 

 

 

 

Figure 4.26. Simple structural diagram of the Boeing V-22 aircraft 

a) Determine K for the system to be stable. 

 b) Determine and Tqd according to h(t) when K=280 and there is no noise. 

 c) Determine and Tqd in terms of h(t) when K = 280 and there is a filter at 

the input equal to: 

L 2

0,5
W (p)=

p 1,5p 0,5+ +
 

 Answer:  

 a)
2

4 3 2

p 1,5p 0,5
W(p) K

100p 215p 30,5p p

+ +
=

+ + +
 

    For the system to be stable: K > 127,655. 

  b)
2

k 4 3 2

280(p 1,5p 0,5)
W (p)

100p 215p 310,5p 421p 140

+ +
=

+ + + +
 

> 0.85 and Tqd50s. 

  c) k 4 3 2

140
W (p)

100p 215p 310,5p 421p 140
=

+ + + +
 

> 0.08 and Tqd25s. 

7. Let the control system have the diagram as shown in Figure 4.27. 

 

 

 

Figure 4.27. Automatic control system 

a) Find K, a for damping coefficient 
1

2
 = and n = 5rad/s. 

b) Calculate y(t) with K and a calculated in the previous section; u(t) = 1(t). 

F(p) 

2K(p 1,5p 0,5)

p

+ +

 

1

(20p 1)(10p 1)(0,5p 1)+ + +
 

 

U(p) Y(p) 

_ 
 

+ 

 

K

p(p a)+
 

U(p) Y(p) 

_ 

E(p) 
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  8. The space telescope has a structural diagram as shown in Figure 4.28, 

in which K and K1 are the coefficients that need to be chosen to achieve static 

and dynamic quality. 

 a) Simplify the structure diagram and write the transfer function for input 

signal x(t) and noise f(t):    

Y(p)/X(p) and Y(p)/F(p). 

 b) Determine the steady-state error E(p) when the input signal is:  

x(t) = 1(t) and x(t) = t. 

 

Figure 4.28. Space telescope control system 

 Answer:  

 a)
1 1

Y(p) K Y(p) 1
;

X(p) p(p K ) K F(p) p(p K ) K
= =

+ + + +
 

  b) 1

1

p(p K )
E(p) .X(p)

p(p K ) K

+
=

+ +
 

 9. Astronaut Bruce Mc Candless used an impulse device with a 

compressed air nozzle to move in space. The control mechanism is implemented 

by K2 amplification as depicted in figure 4.29. The inertia of people and 

equipment is equal to J = 25kg.m2, K3 has the function of reducing static 

deviation exl. The coefficients K1, K2, K3 help determine the static and dynamic 

quality of the system. 

a) Write the transfer function of the closed system. 

b) Determine E(p) when the input is x(t) = 0 (t) = 1. 

 

 

 

 

 

Figure 4.29. The control system sends people into space 

  

K1 

1

p
 

K3 

 
0  

_ 

K2 

1

Jp
 

_ 

Controller 
 e 



138 
 

 Answer: 

  a) 1 2
k

0 1 2 3 1 2

(p) K K
W (p)

(p) p(Jp K K K ) K K


= =
 + +

 

 b) 1 2 3
E 0

0 1 2 3 1 2

E(p) 1 Jp K K K
W (p) ; ;E(p)

(p) p p(Jp K K K ) K K

+
=  = =
 + +

 

 10. Figure 4.30 is a block diagram of the aircraft's altitude control system. 

Assuming the time constant T of the controller is 3s and the torque to inertia 

ratio K/J is 2/9 rad2 /s2, find the damping coefficient of the system. 

 

 

 

Figure 4.30. Aircraft altitude control system 

 11. The block diagram of the position control system of a large 

microwave antenna is depicted in Figure 4.31. To design such a system, we 

must account for the disturbance caused by the rotational force of wind gusts. 

Determine the value range of K1 and K2 so that the influence of noise f(t) = δ(t) 

is minimal in the steady state, for an input signal of r(t) = 1(t) . 

 

 

 

 

 

 

Figure 4.31. Ultra short wave antenna position control system 

12. Block diagram of servo mechanism used in aircraft hydraulic 

systems, depicted in figure 4.32. Determine the steady state error when the 

input is r(t) = a0 +a1t + a2t
2 

 

 

 

 

 

 

Figure 4.32. Servo mechanism in aircraft hydraulic systems 
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Conclusion of chapter 4 

 Even when a system achieves stability, it is imperative to assess its 

operational quality. This evaluation relies on specific criteria that serve as the 

basis for a thorough examination. These criteria constitute specific quality 

parameters. Leveraging the process parameters, encompassing both the 

transitional and establishment processes, individuals can gauge the system's 

quality level and devise strategies to either maintain or enhance the quality of 

the system. 

Chapter 4 review questions 

Question 1: Provide a comprehensive overview of the quality of the 

automatic control system throughout the transition and steady-state processes. 

Question 2: Explain the method for determining errors in steady mode. 

How can one calculate the steady-state error with different inputs? 

Question 3: Define the quality of the system during the transition 

process. Elaborate on the method for evaluating the quality of automatic control 

systems through quality integration. 
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Chapter 5 

ANALYZING CONTROL SYSTEMS USING MATLAB 

  5.1. ANALYZING CONTROL SYSTEMS ACCORDING TO TIME 

CHARACTERISTICS USING MATLAB 

5.1.1. Surveythe stability of the control system according to time 

characteristics using Matlab 

a) Survey steps 

Step 1: Set the request transit time, SettlingTime_Req 

Step 2: Determine information from response time 

+ Determine the transfer function of the control system: Use the function 

tf(num, den) when knowing the polynomials of the transfer function or ss2tf(A, 

B, C, D) when knowing the state equation of the system control. 

+ Create time responses such as transient responses and impulse transient 

responses. Use the functions step (num, den) and impulse (num, den). 

+ Get detailed information about the control system's transient time. 

S = stepinfo() 

SettlingTime = S. SettlingTime 

Step 3: Evaluate the stability of the control system 

if SettlingTime <=inf 

disp('System is stable'); 

elseif SettlingTime >=inf 

disp('System is unstable'); 

end 

if SettlingTime <= SettlingTime_Req 

disp('System stabilized quickly'); 

else. else 

disp('System stabilizes slowly'); 

end 

b) Example 5.1 

Let the control system have the following transfer function: 

2

5
sys = 

s  + 2s + 3
 

Investigate the stability of the control system according to time 

characteristics. 

+ The calculation and survey program are built as follows: 
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% Step 1: Set the required transit time 

SettlingTime_Req = 5  % Request transient time 

% Step 2: Determine information from response time 

% Determine the equation of the state of the control system 

num = [5]; 

den = [1, 2, 3]; 

sys = tf(num, den) 

% Generates timing responses and retrieves response information 

step(sys); 

S = stepinfo(sys); 

SettlingTime = S.SettlingTime 

% Step 3: Evaluate the stability of the control system 

% Check system stability 

if SettlingTime <=inf 

disp('System is stable'); 

elseif SettlingTime >=inf 

disp('System is unstable'); 

end 

if SettlingTime <= SettlingTime_Req 

disp('System stabilized quickly'); 

else. else 

disp('System stabilizes slowly'); 

end 

+ After running the program, the results received are the transient time, 

assessment of system stability and transient characteristics of the system (Figure 5.1). 

 

Figure 5.1.System transient characteristics 
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SettlingTime_Req = 5 

       5 

sys = ----------------- 

           s^2 + 2 s + 3 

 SettlingTime = 3.4043 

The system stabilizes quickly 

5.1.2. Survey the quality of the system according to time characteristics 

using Matlab 

a) Survey steps 

Step 1. Set required quality indicators and declare communication 

functions 

Call the function “HTDK_YeuCau” to load input data. The code for this 

function is as follows: 

function HTDK_YeuCau() 

disp('Enter required quality indicators:'); 

% Quality indicator of the system during the transition process 

maxOvershoot = input('Overshoot threshold (%), Example 10: '); 

maxRiseTime = input('Rise time threshold (s), example 1: '); 

maxSettlingTime = input('Transient time threshold (s), example 5: '); 

% Quality indicator of the system in steady mode 

maxErrorSteadyState = input('Static error threshold, eg 0.1: '); 

maxErrorVelocity = input('Error threshold based on speed, eg 0.2: '); 

maxErrorAcceleration=input('Acceleration error threshold, example 0.3: '); 

% Determine the transfer function of the control system. 

disp('Enter the polynomial of the transfer function :'); 

num = input('Polynomial numerator, eg [1]: '); 

den = input('Polynomial denominator, eg [1 2 1]: '); 

sys = tf(num, den); % Create transfer function 

% Populate values into workspace 

assignin('base', 'maxOvershoot', maxOvershoot); 

assignin('base', 'maxRiseTime', maxRiseTime); 

assignin('base', 'maxSettlingTime', maxSettlingTime); 

assignin('base', 'maxErrorSteadyState', maxErrorSteadyState); 

assignin('base', 'maxErrorVelocity', maxErrorVelocity); 

assignin('base', 'maxErrorAcceleration', maxErrorAcceleration); 
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assignin('base', 'num', num); 

assignin('base', 'den', den); 

assignin('base', 'sys', sys); 

end 

Step 2 . Determine information from response time 

- Create time responses such as transient response and impulse transient 

response: Use the function step(num, den), impulse(num, den). 

% Plot the step response 

step(sys) 

xlabel('Time (s)'); 

ylabel('System output'); 

title('Step response of the control system'); 

- Get detailed information about response time during transients 

system quality indicators during the transition process 

info = stepinfo(sys); 

disp('System quality information during transition:'); 

disp(['RiseTime: ' num2str(info.RiseTime) ' seconds']); 

disp(['SettlingTime: ' num2str(info.SettlingTime) ' seconds']); 

disp(['Maximum overshoot: ' num2str(info.Overshoot) ' %']); 

% Calculate the set value 

steadyStateValue = y(end); 

disp(['Stable value: ' num2str(steadyStateValue)]); 

- Get detailed information about the time response in steady state mode, 

including steady error types such as Static error , Speed error , Acceleration 

error using the function to determine the steady error constants Establishment 

and static order, Function to determine the stability errors. 

+ Function to determine the steady-state error constants and static orders of 

the system: 

function Hang_So_Sai_So(num, den) 

% Example Hang_So_Sai_So([0.5], [1 0.2 10]) 

% Check if the transfer function is valid 

if isempty(num) || isempty(den) 

disp('Invalid transfer function .'); 

return; 

end 

rt = tf(num, den); 
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syms sy; % Symbolic variable (use another name) 

num = poly2sym(num, sy); 

den = poly2sym(den, sy); 

gs = num / den; % Symbolic representation of the transfer function 

Kp = lim(gs); % Position constant, Kp 

Kv = lim(sy * gs); % Velocity constant, Kv 

Ka = lim(sy^2 * gs); % Acceleration constant, Ka 

fprintf('\n Establishment error constants:\n\t\t Kp = %.3f,\n\t\t Kv = %.3f,\n\t\t Ka 
= %.3f\n ', Kp, Kv, Ka); 

checkSystemType(Kp, Kv, Ka); 

disp(' '); % Down the line 

end 

%% User-defined function 

function y = lim(f) 

syms sy; 

y = limit(f, sy, 0); 

if isnan(y) 

y = inf; 

end 

end 

function checkSystemType(Kp, Kv, Ka) 

if ~isinf(Kp) && Kv == 0 && Ka == 0 

disp('System static level: 0'); 

elseif isinf(Kp) && ~isinf(Kv) && Ka == 0 

disp('System static degree: 1'); 

elseif isinf(Kp) && isinf(Kv) && ~isinf(Ka) 

disp('System static degree: 2'); 

end 

end 

+ Function to determine established errors 

function Sai_So(num, den) 

% Example False_So([0.5], [1 0.2 10]) 

% Check if the transfer function is valid 

if isempty(num) || isempty(den) 

disp('Invalid transfer function.'); 

return; 
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end 

sys = tf(num, den); 

r=1;  % Input quantity 

[y,t] = step(sys); % System response to step set value 

step(sys); 

% Static error 

e_steady_state = r - y(end) 

% Error by speed 

s = tf('s'); 

Ys = sys*(1/s); %Laplace image output quantity 

Rs = tf([r], [1]); % Laplace image set quantity 

e_velocity = evalfr(s*(1-Ys/Rs),0) 

% Error according to acceleration 

e_acceleration = evalfr(s^2*(1-Ys/Rs),0) 

% Show results 

disp(['Static error: ' num2str(e_steady_state)]); 

disp(['Velocity error: ' num2str(e_velocity)]); 

disp(['Acceleration error: ' num2str(e_acceleration)]); 

Step 3 . Evaluate the quality of the control system 

The program evaluates the quality of the system, as follows: 

function Chat_Luong (num, den) 

% Example Chat_Luong([0.5], [1 0.2 10]) 

% Check if the transfer function is valid 

if isempty(num) || isempty(den) 

disp('Invalid transfer function.'); 

return; 

end 

sys = tf(num, den); 

[y, t] = step(sys); % Gets the system response 

% Plot the step response 

step(sys) 

xlabel('Time (s)'); 

ylabel('System output'); 

title('Step response of the control system'); 

system quality indicators during the transition process 

info = stepinfo(sys); 
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disp('System quality information during transition:'); 

disp(['Increase time(Rise time):' num2str(info.RiseTime) 'seconds']); 

disp(['Settling time):'num2str(info.SettlingTime)'second']); 

disp(['Maximum overshoot(Overshoot):'num2str(info.Overshoot)' %']); 

% Calculate steady-state value 

steadyStateValue = y(end); 

disp(['Steady-state value): ' num2str(steadyStateValue)]); 

% Evaluate the quality of the system during the transition process 

if info.RiseTime <= maxRiseTime 

disp('System responds quickly'); 

else. else 

disp('System response is slow'); 

end 

if info.Overshoot > maxOvershoot 

disp('The system has high overcorrection'); 

else. else 

disp('The system has low overshoot'); 

end 

% Calculate the established errors 

% static error 

r=1; %Input quantity 

e_steady_state = r - y(end); 

% Error by speed (velocity error) 

s = tf('s'); 

Ys = sys*(1/s); %Laplace image output quantity 

Rs = tf([r], [1]); % Laplace image set quantity 

e_velocity = evalfr(s*(1-Ys/Rs),0); 

% Acceleration error 

e_acceleration = evalfr(s^2*(1-Ys/Rs),0); 

% Show results 

disp(['Static error: ' num2str(e_steady_state)]); 

disp(['Velocity error: ' num2str(e_velocity)]); 

disp(['Acceleration error: ' num2str(e_acceleration)]); 

% Evaluation of established errors 

disp('Evaluate quality in steady mode:'); 

if abs(e_steady_state) > maxErrorSteadyState 
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disp('The system has high static error'); 

else. else 

disp('System has low static error'); 

end 

if abs(e_velocity) > maxErrorVelocity 

disp('The system has high speed error'); 

else. else 

disp('The system has low speed error'); 

end 

if abs(e_acceleration) > maxErrorAcceleration 

disp('The system has high acceleration error'); 

else. else 

disp('The system has low acceleration error'); 

end 

b) Example 5.2 

Let the transfer function of the antenna control system be as follows 

2

s + 12
W = 

s  + 15s + 54
 

Calculate the steady-state errors , error constants and evaluate the quality of 

the control system. 

- Call the function: “ HTDK_YeuCau ” to load input data. The following 

results: 

>> HTDK_YeuCau 

Enter the required quality indicators: 

Overcorrection threshold (%), Example 10: 10 

Threshold rise time (s), Example 1:1 

Transient time threshold (s), Example 5: 5 

Static error threshold, example 0.1: 0.1 

Error threshold based on speed, example 0.2: 0.2 

Error threshold according to acceleration, example 0.3: 0.3 

Enter the polynomial of the transfer function : 

Polynomial numerator, example [1]: [1 12] 

Polynomial denominator, for example [1 2 1]: [1 15 54] 
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      s + 12 

sys = ------------------------ 

        s^2 + 15 s + 54 

- Call function Sai_So(num, den). The following results: 

Static error: 0.77877 

Error according to speed: Inf 

Acceleration error: Inf 

- Call the function Hang_So_Sai_So (num, den). The following results: 

Establishment error constants: 

  Kp = 0.222, 

  Kv = 0.000 

  Ka = 0.000 

System static level: 0 

- Call the function Chat_Luong(num, den). The following results: 

+ System quality information during transition: 

Rise time: 0.41258 seconds 

Settling time: 0.71292 seconds 

Overshoot: 0 % 

Steady-state value: 0.22123 

+ Evaluate the quality of the system during the transition process: 

The system responds quickly 

The system has low overcorrection 

The system stabilizes quickly 

+ System quality information in steady mode: 

Static error: 0.77877 

Error according to speed: Inf 

Acceleration error: Inf 

+ Quality assessment in steady mode: 

The system has high static errors 

The system has high speed errors 

The system has high acceleration errors 
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5.2. ANALYSIS OF CONTROL SYSTEMS IN THE FREQUENCY 

DOMAIN USING MATLAB 

5.2.1. Surveythe stability of the control system in the frequency domain 

using MatLab 

a) Survey steps 

Step 1. Determine the transfer function of the system in the frequency 

domain. 

The system's transfer function in the frequency domain (G(jω)) represents 

the relationship between the input and output of the control system over 

frequency. This can be done by performing measurement experiments or system 

simulations in the frequency domain. 

Step 2 . Draw the frequency characteristics of the system. 

From the transfer function, draw the system's frequency characteristics, 

such as: Frequency phase amplitude characteristics, Bode, and Nyquist plots. 

Frequency characteristics represent the system's response to input signals at 

different frequencies. 

Step 3 . Analyze frequency characteristics. 

Analyze frequency characteristics to find important parameters such as 

edge cutoff frequency, phase cutoff frequency, amplitude and phase reserve,... 

Step 4 . Determine system stability. 

Based on the results of the frequency characteristic analysis, the stability of 

the system can be determined. If the system has positive amplitude margin and 

phase margin, then the system is considered stable and is able to tolerate larger 

variations of the input signal. Conversely, if the amplitude margin or phase 

margin has a negative value, the system may be near the instability limit and 

susceptible to uncontrolled oscillations. 

In Matlab, to evaluate the stability of the control system in the frequency 

domain, the following functions can be used: 

Function sys = tf(num, den): Used to create the transfer function of the 

control system based on system coefficients, such as proportional coefficients, 

time constants, natural frequencies,... 

Function bode(sys): used to draw the Bode chart of the system. 

Function nyquist(sys): used to draw the Nyquist chart of the system. 

Margin(sys) function: used to calculate the amplitude and phase margin of 

the system, and the margin and phase cutoff frequencies. 

b) Example 5.3 

Give the structural diagram of a flight control system (Figure 5.2). Find the 

criteria to evaluate the stability in the frequency domain of the above system. 
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Figure 5.2. Aircraft flight control system 

- In Matlab, you can use the functions tf, bode , nyquist , margin , to write 

an mfile to calculate indicators to evaluate the stability in the frequency domain 

of the control system . 

clc, clear all, 

% Create the system's frequency transfer function 

num = [1.5]; % Numerator 

den = conv(conv([1 0], [1 3]), [1 1 1]); % Denominator 

sys = tf(num, den); 

% Draw Bode, nyquist plots 

nyquist(sys); 

figure 

margin(sys) 

% Calculate amplitude and phase margin, cutoff frequency and phase 
cutoff frequency 

[Gm,Pm,Wcg,Wcp] = margin(sys); 

disp(['Amplitude reserve: ', num2str(20*log10(Gm)), ' dB']); 

disp(['Phase reserve degrees: ', num2str(Pm), ' degrees']); 

disp(['Cutting frequency: ', num2str(Wcg), ' rad/s']); 

disp(['Phase cutoff frequency: ', num2str(Wcp), ' rad/s']); 

+ The result after running the program will be the Bode and nyquist charts 

of the system (Figure 3.8) and indicators to evaluate the stability in the 

frequency domain of the system as follows: 

Amplitude reserve: 4.2169 dB 

Phase reserve: 40.89 degrees 

Cutoff frequency: 0.86602 rad/s 

Phase cutoff frequency: 0.5541 rad/s 

 2

1,5

s(s+3)(s +s+1)

 -

_ 

U(s

U(p

) 

Y(s

Y(p

) 

+ 



151 
 

 

 

Figure 5.3. Bode, nyquist plots of the flight control system 

3.2.2. Surveythe quality of the control system in the frequency domain 

using Matlab 

a) Survey steps 

Step 1. Determine the transfer function of the system in the frequency 

domain G(jω). 

Step 2.Draw the frequency characteristics of the system such as Frequency 

Phase Amplitude Characteristics, Bode and Nyquist Plots. 
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Step 3. Analyze frequency characteristics. 

Analyze frequency characteristics to find important parameters such as 

cutoff frequency, phase cutoff frequency, amplitude reserve, phase reserve , 

resonance peak, resonance frequency, slope, bandwidth of the system. 

Step 4. Determine required quality goals. 

Determining required quality objectives is the process of determining the 

standards that the control system needs to meet to achieve the desired quality: 

+ Required slope: The goal is to ensure the system is able to respond 

quickly to frequency changes. 

+ Required amplitude and phase margin: The goal is to ensure the system 

has high stability under variable conditions. 

+ Required resonance peak: The goal is to have a suitable resonance peak 

value to maintain stable response and quality of the system. 

+ Required bandwidth: The goal is to have the appropriate bandwidth to 

ensure the system has the best signal transmission performance. 

Step 5 . Evaluate the quality of the control system. 

Compare quality indicators with the required quality goals. If the quality 

indicators meet the required quality objectives, the system can be considered to 

have achieved the desired quality. If there is a discrepancy between quality 

indicators and the required goals, it is necessary to make adjustments and 

improve the system to achieve the desired quality. 

- In Matlab, to evaluate the quality of the control system in the frequency 

domain, the following functions can be used: 

Function sys = tf(num, den): Used to create the transfer function of the 

control system based on system coefficients, such as proportional coefficients, 

time constants, natural frequencies,... 

Function bode(sys): used to draw the Bode chart of the system. 

Function nyquist(sys): used to draw the Nyquist chart of the system. 

Margin(sys) function: used to calculate the amplitude and phase margin of 

the system, and the margin and phase cutoff frequencies. 

b) Example 5.4 

Given a control system with the following transfer function : 

2

1
sys  = 

s  + 2s + 4
 

Let's evaluate the quality of the control system in the frequency domain 

compared to the required quality target: Required amplitude margin 20 dB and 

required phase margin 40 deg. 
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In Matlab, you can use the functions tf, bode , nyquist , margin , to write an 

mfile to calculate indicators to evaluate the quality of the control system in the 

frequency domain . 

clc, clear all 

% Step 1: Determine the transfer function of the system in the frequency 
domain G(jω) 

num = [1]; 

den = [1, 2, 4]; 

sys = tf(num, den) 

% Step 2: Draw the system's frequency characteristics 

nyquist(sys) % Nyquist plot 

title('Nyquist chart') 

grid on 

figure 

margin(sys) % Bode plot 

% Step 3: Analyze frequency characteristics 

% amplitude reserve, phase reserve 

[Gm, Pm, Wcg, Wcp] = margin(sys); 

% Convert amplitude margin to dB 

peakGain = 20 * log10(Gm); 

% Calculate the edge cutoff frequency and phase cutoff frequency 

[~, ~, wc] = bode(sys); 

crossoverFrequency = wc(1); % Cutoff frequency (rad/s) 

crossoverPhase = wc(2); % Phase cutoff frequency (rad/s) 

% Calculate Resonance Peak and Resonance Frequency 

wn = sqrt(den(end)); % Natural Frequency 

zeta = sqrt(1 / (4 * den(1))); % Damping coefficient 

peakFrequency = wn * sqrt(1 - 2 * zeta^2); % Resonance frequency (rad/s) 

peakAmplitude = 1 / (2 * zeta * sqrt(1 - zeta^2)); % Resonance peak 

% Calculate the slope 

w_high = crossoverFrequency; 

w_low = crossoverFrequency / 10; % Lower frequency 

[mag_high, ~] = bode(sys, w_high); % Value at cutoff frequency 

[mag_low, ~] = bode(sys, w_low); % Value at lower frequency 

slope = (20 * log10(mag_high) - 20 * log10(mag_low)) / (w_high - w_low); % 
Slope (dB/decade) 

% Calculate bandwidth 
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bandwidth = bandwidth(sys); 

% Print parameters 

disp(['Crossover frequency: ', num2str(crossoverFrequency), ' rad/s']); 

disp(['Phase cutoff frequency: ', num2str(crossoverPhase), ' rad']); 

disp(['Amplitude margin: ', num2str(peakGain), ' dB']); 

disp(['Phase margin: ', num2str(Pm), ' deg']); 

disp(['Resonance peak: ', num2str(peakAmplitude)]); 

disp(['Resonance frequency: ', num2str(peakFrequency), ' rad/s']); 

disp(['System slope: ', num2str(slope), ' dB/decade']); 

disp(['Bandwidth: ', num2str(bandwidth), ' rad/s']); 

% Step 4: Determine required quality goals 

desiredPeakGain = 20; % Required amplitude margin (dB) 

desiredphase = 20; % Required phase margin (deg) 

disp(['Required phase margin: ', num2str(desiredphase), 'deg']); 

disp(['Requested PeakGain: ', num2str(desiredPeakGain), 'dB']); 

% Step 5: Evaluate the quality of the control system (can be added) 

if Pm >= desiredphase && peakGain >= desiredPeakGain 

disp('The system meets the desired quality.') 

else. else 

disp('The system needs adjustment to achieve the desired quality.') 

end 

+ The result after running the program will be the Bode and nyquist charts 

of the system (Figure 3.9), (Figure 3.10) and the required quality indicators and 

quality assessment of the control system as follows: 

Cutoff frequency: 0.1 rad/s 

Phase cutoff frequency: 0.10229 rad 

Amplitude margin: Inf dB 

Phase reserve: Inf deg 

Resonance peak: 1.1547 

Resonance frequency: 1.4142 rad/s 

System slope: 0.11928 dB/decade 

Bandwidth: 2.5424 rad/s 

Required phase margin: 40 deg 

Required amplitude margin: 20 dB 

The system meets the desired quality. 
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Figure 5.4. Nyquist plot of the system 

 

Figure 5.5. Bode plot of the system 

5.3. CHAPTER 5 EXERCISES 

5.3.1. Sample solution exercises 

Exercise 1. Write a Function file function to automatically evaluate the 

stability and quality of a control system in the frequency domain. 

Applied to a control system with the following transfer function 

2

4
sys = 

s  + 4s + 1
 

Know the required quality target: Required amplitude margin 20 dB and 

required phase margin 60 deg. 
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- The evaluateControlSystem function below will automatically evaluate 

the stability and quality of the control system in the frequency domain, when 

this function is called with the system parameters and required quality goals. 

function evaluateControlSystem(num, den, Gyc, Pyc) 

% Step 1: Determine the transfer function of the system in the frequency 
domain G(jω) 

sys = tf(num, den); 

% Step 2: Draw the system's frequency characteristics 

figure 

nyquist(sys) % Nyquist plot 

title('Nyquist chart') 

grid on 

figure 

margin(sys) % Bode plot 

% Step 3: Analyze frequency characteristics 

% amplitude reserve, phase reserve 

[Gm, Pm, ~, ~] = margin(sys); 

% Convert amplitude margin to dB 

peakGain = 20 * log10(Gm); 

% Print parameters 

disp(['Amplitude margin: ', num2str(peakGain), ' dB']); 

disp(['Phase margin: ', num2str(Pm), ' deg']); 

% Step 4: Determine required quality goals 

disp(['Required phase margin: ', num2str(Pyc), ' deg']); 

disp(['Required amplitude margin: ', num2str(Gyc), ' dB']); 

% Step 5: Evaluate the stability of the control system 

if Gm > 0 && Pm > 0 

disp('System is stable.'); 

else. else 

disp('The system is unstable or on the border of stability.'); 

end 

% Step 6: Evaluate the quality of the control system 

if Pm >= Pyc && peakGain >= Gyc 

disp('The system meets the desired quality.') 

else. else 

disp('The system needs adjustment to achieve the desired quality.') 

end 

end 
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Applied to the given control system, the evaluateControlSystem function 

needs to be called with the system parameters and required quality goals, as 

follows: 

num = [1]; 

den = [1, 2, 4]; 

Gyc = 20; % Required amplitude margin (dB) 

Pyc = 40; % Required phase margin (deg) 

evaluateControlSystem(num, den, Gyc, Pyc); 

- The following results: 

Amplitude margin: Inf dB 

Phase reserve: Inf deg 

Required amplitude margin: 20 dB 

Required phase margin: 40 deg 

System is stable. 

The system meets the desired quality. 

Exercise 2. Use MatLab / Simulink to calculate the transfer function from 

input to output of the system with the structural diagram in Figure 5.6. 

 

 

 

 

 

Figure 5. 6 . Structure diagram of the control system 

Instruct: 

- Build a Simulink diagram of the control system as shown in Figure 5.7 

with the name BaiTapGiaiMau.slx 

 

Figure 5. 7 . Simulink diagram of the control system 

- Run the following code: 

[a,b,c,d] = linmod('BaiTapGiaiMau'); 

+ + 

  
- - 

x y 

2

1

s +s+1
 1

s
 

s+2

s+1
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[num,den]= ss2tf(a,b,c,d);  

H=tf(num,den) 

 The following results: 

s^2 + s 

H = ------------------------------------------------ 

s^4 + 3 s^3 + 5 s^2 + 2 s - 1.269e-16 

5.3.2. Self-explanatory exercises 

1. Build a program or use a set of different MatLab functions to calculate the 

transfer function from input to output of systems with the structural diagram in 

Figure 5.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 . 8 . Structure diagram of closed control loops 

Instructions: Use the set of functions available in Matlab such as tf 

function, feedback function, and step function. 
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2. Use functions in MatLab to calculate the open-circuit transfer function, 

error-based transfer function, closed-circuit transfer function and perturbation 

transfer function F(s) of linear control systems with primitives. The structure 

diagram is as shown in Figure 5.9. 

 

 

 

 

 

 

 

 

Figure 5.9. Structure diagram of linear control systems 

Instruct : 

To calculate the open-circuit transfer function , use the function tf(); 

To calculate the closed-circuit transfer function, use the feedback() 

function; 

To calculate the transfer function in terms of bias, use the functions tf(), 

feedback(); 

To calculate the perturbation transfer function F(s), use the functions tf(), 

feedback(). 

3. The aircraft's direction control system has a structural diagram (Figure 5.10). 

 

 

 

 

 

 

Figure 5.10. Structure diagram of the aircraft's direction control system 

a) Construct a Bode plot of the above system and determine the phase and 

amplitude margin when ω n 
2 = 15.267. 

b) Repeat step a, when ω n 
2 = 9500. 

Instructions: Use the tf functionto create the system's transfer function and 

bode to calculate the frequency response, use the margin functionto calculate 

the system's Gain Margin (GM_dB) and Phase Margin (PM_deg). 
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4. Use Bode or Nyquist plots to find the K value that ensures the system is 

stable when knowing that the open-circuit transfer function of a unit negative 

feedback closed system has the following form: 

a) ( ) ( )
( )

( )( )( )

K s 1
G s .H s

s s 2 s 5 s 10

+
=

+ + +
 

b) ( ) ( )
( )( )( )

K
G s .H s

s s 2 s 0,1 s 10
=

+ + +
 

Instruct: 

Construct an open-circuit transfer function, draw a Bode plot of the open-

circuit transfer function, find the K value to ensure stability as follows: 

[~, GM, ~, Wc] = margin(sys); 

PM = 180 + angle(evalfr(sys, Wc)*1i); % Calculate phase margin (PM) at cutoff 
frequency (Wc) 

K_stable = 1 / abs(evalfr(sys, Wc)*1i); % K value is guaranteed to be stable. 

 

Chapter 5 review questions 

Question 1. What is a complex transfer function? The effect of complex 

transfer functions in determining the frequency characteristics of the control 

system. 

Question 2. Present the method of calculating the frequency amplitude 

characteristics and frequency phase characteristics of the system from the 

complex transfer function ? 

Question 3. State the meaning and role of the Nyquist chart in evaluating 

the stability of a control system. 

Question 4. How does the Nyquist plot G(jω) affect the stability of the 

system? 

Question5. State the formula for calculating the Bode plot for the 

frequency amplitude and frequency phase characteristics of the complex transfer 

function . 

Question 6. Explain how to calculate the resonance peak of a second-order 

control system? 

Question 7. Write an expression to calculate the resonant frequency for a 

second-order control system? 

Question 8. What are edge cutoff frequency and phase cutoff frequency? 

Write an expression to calculate these 2 parameters. 

Question 9. What are amplitude margin and phase margin? Present how to 

evaluate the stability of the system based on amplitude reserve and phase 

reserve. 

Question 10. Present the method to evaluate the quality of the control 

system in the frequency domain? 
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APPENDIX 

Original-image table of some common functions 

No. Original function Image function 

1 δ(t) 1 

2 1(t) 1/p 

3 At 2

A

p
 

4 
n 1A

t
(n 1)

−

−
 

n

A

p
 

5 tA.e−  
A

p + 
 

6 
n 1 tA

t .e
(n 1)!

− −

−
 

n

A

(p )+ 
 

7 A.Sinωt 2 2

A.

p



+
 

8 A.Cos t 2 2

A.p

p +
 

9 
t

2
A

.e sin t
−




;
2

2

4


=  −  2 2

A

p p+  +
 

10 
t

2
t

A.e (Cos t sin t)
2

−

 − 


;
2

2

4


=  −  2 2

Ap

p p+  +
 

11 
tA

(1 e )−−


 
A

p(p )+ 
 

12 2

A
(1 Cos t)− 


 2 2

A

p(p )+ 
 

13 f'(t) pF(p) - f(0) 

14 f''(t) 
2

2

f (0) f (0)
p .F(p)

p p


− −  

15 

t

0

f (t)dt  
F(p)

p
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No. Original function Image function 

16 nt  n 1

n!

p +
 

17 att.e−  
2

1

(p a)+
 

18 n att .e−  n 1

n!

(p a) ++
 

19 
at1

(1 e )
a

−−  
1

p(p a)+
 

20 
at

2

1
(at 1 e )

a

−− +  2

1

p (p a)+
 

21 
at bt1

(e e )
b a

− −−
−

 
1

(p a)(p b)+ +
 

22 
at bt1 1

1 (be ae )
ab a b

− − 
+ − − 

 
1

p(p a)(p b)+ +
 

23 ate sin t−   2 2(p a)



+ +
 

24 ate cos t−   2 2

p a

(p a)

+

+ + 
 

25 sin( t ) +  
2 2

cos psin

p

 + 

+
 

26 cos( t ) +  
2 2

pcos sin

p

− 

+
 

27 
ate sin( t )−  +   2 2

cos (p a)sin

(p a)

 + + 

+ +
 

28 

t
2

2 2 2

1 e
sin( 1 .t )

1



−  −  + 
  − 

 2 2

1

p(p 2 p )+  +
 

 


